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Abstract

Surface wave dispersion curve inversion is a challenging problem for linear inversion procedures due to its highly non-linear
nature and to the large numbers of local minima and maxima of the objective function (multi-modality). In order to improve the
reliability of the inversion results, we implemented and tested a two-step inversion scheme based on Genetic Algorithms (GAs).
The proposed scheme performs several preliminary “parallel” runs (first step) and a final global run using the previously-
determined fittest models as starting population.

In this work we focus on the inversion of shear-wave velocity and layer thickness while fixing compressional-wave velocity and
density according to user-defined Poisson's ratios and velocity–density relationship respectively. The procedure can nonetheless
perform the inversion under different degrees of regularization, depending on the a priori information and the desired degree of
freedom of the system.

Thanks to the large number of considered models, in addition to the fittest model, a mean model and its accuracy are evaluated
by means of a statistical approach based on the estimation of the Marginal Posterior Probability Density (MPPD).

We tested the proposed GA-based inversion scheme on three synthetic models reproducing a complex structure with low-to-
moderate velocity cover (also including a low-velocity channel) lying over hard bedrock. For all the considered cases the bedrock
velocity and depth were properly identified, and velocity inversion was reconstructed with minor uncertainties.

The performed tests also investigate the influence of the first higher mode, the reduction of the frequency range of the
considered dispersion curve as well as the use of different number of strata. While a limited frequency range of the dispersion curve
(maximum frequency reduced from 80 to 40 Hz) does not seem to significantly limit the accuracy of the retrieved model, the
adoption of the correct number of strata and the addition of the first higher mode help better focus the final solution.

In conclusion, the proposed approach represents an improvement of a purely GA-based optimization scheme and the MPPD-
based mean model typically offers a more significant and precise solution than the fittest one.

Results of the inversion performed on a field data set were validated by borehole stratigraphy.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Surface wave analysis is an efficient tool to obtain the
vertical shear-wave profile (Park et al., 1999). The large
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amplitude and low attenuation allow an accurate
reconstruction of the subsurface structure via inversion
of the observed dispersion curve and smoothed seismic
sections can be reconstructed by considering successive
shots (e.g. Park, 2002).

The inversion procedure follows the determination of
the dispersion curve (e.g. Park et al., 1999; Dal Moro et
al., 2003a, in press) and allows reconstructing the
vertical shear-wave velocity distribution from the
observed dispersion curve. As surface wave inversion
is a typical example of non-linear multi-parameter
problem, the classical solution consists in a linearization
of the set of considered equations.

The linear approach can be considered as an
acceptable and computationally-effective solution only
when some robust a priori information is available and a
good starting model can thus be established that is close
to the real solution. In fact, the main problem of the
traditional approach is that the final solution intrinsically
depends on the starting model and that poor or missing a
priori information makes the final solution particularly
weak.

When the considered problem is multi-modal1 (i.e.
the objective function exhibits several local minima and
maxima), an approach based on the Jacobianmatrix can
fail because the starting model can be close to some
local minimum that will attract it.

A simple example can highlight this aspect. We
calculated the synthetic fundamental mode dispersion
curve for a model consisting of six layers and then
calculated the objective function [root-mean-square—
see Eq. (1)] by varying only thickness and shear-wave
velocity of the second and third layers2 and by fixing the
values of the other parameters to their actual values. In
other words, as surface wave velocities are function of
shear- and compressional-wave velocities, density and
thickness of the layers, we let free only four out of
twenty-three possible variables (the bottom layer is
semi-infinite).

Fig. 1a shows a 3D plot of objective functions
(calculated for the synthetic curve) for 4000 random
models. Velocities and thickness are fixed to their
correct values but for the second and third layers. For
such layers velocities vary in the range between 150 and
400 m/s and thickness between 1 and 3 m. Actual values
1 It must be underlined that the term multi-modality used in the
optimization literature has nothing to do with the concept of mode as
used in surface wave analysis.
2 The considered model is later on presented in some detail—see

Fig. 2, model #1.
are 350 m/s and 2 m for the second layer and 200 m/s
and 2 m for the third one (see model #1 in Fig. 2). The
abscissas report the ratio between shear-wave velocity in
the second and third layers (VS ratio) and the ratio
between the thickness of the second and third layers
(THK ratio).

The complex result from this extremely simple and
constrained example gives evidence of several local
minima. The possible use of derivative-based linear
methods would cause an evident starting-model-depen-
dent solution.

To further highlight the problem, Fig. 1b shows a 2D
plot for 4000 objective functions versus the VS ratio, by
keeping constant the layer thicknesses to the proper
values (THK ratio equal to 1). In this case velocities
vary in the range between 380 and 320 m/s in one layer
and between 230 and 170 m/s in the other, confining the
velocity ratio between 2.2 and 1.4. The distribution of
points characterized by low-value objective functions is
large even in the surrounding of the global-maximum
area and gives evidence of the extreme non-linearity and
multi-modality of the problem. Small variations of the
VS ratio produce “misleading” values of the objective
function also in the surrounding of the correct solution.
In such conditions, linear methods often fail to converge
on the correct solution and, as far as heuristic methods
are concerned, the scope of the search-space exploration
becomes a crucial issue.

Several algorithms tackle this problem with the main
goal of sampling a wide search space to detect the global
minimum (or maximum) of a given function (e.g. Smith
et al., 1992; Sambridge and Mosegaard, 2002).

Heuristic optimization schemes can be divided into
enumerative, random search (uniform distribution of the
search space sampling, such as Monte Carlo methods)
and “importance sampling” (the search space is non-
uniformly sampled because some function drives the
search, such as Evolutionary or Genetic Algorithms).

Genetic algorithms (GAs) have been used to invert
seismic velocities (Louis et al., 1999), seismic wave-
form (Stoffa and Sen, 1991) and shallow elastic
parameters (Rodriguez-Zuniga et al., 1997).

In GAs, a series of “genetic operations” (namely
selection, crossover and mutation) acts along various
successive steps (generations) with the aim of working
out a solution able to minimize (or maximize) a certain
fitness function that measures how good a certain model
is with respect to a desired characteristic. The final
solution is a model that shows the best fitness value.
This kind of procedure, or at least its basic form, does
not provide any evaluation of accuracy or uncertainty of
the proposed final solution. This is a crucial issue that



Fig. 1. Multi-modality of the surface wave dispersion curve inversion problem. (a) In abscissa: the ratios between the shear-wave velocities (VS) of
two overlying strata and their thickness (THK), in ordinate: the objective functions for 4000 models. (b) A 2D plot of 4000 objective functions versus
the VS ratio, by keeping constant the THK ratio at the proper value.
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we tackle by estimating the Posterior Probability
Density (PPD).

In our scheme, a Marginal PPD analysis integrates
the final model obtained from the GA procedure, with a
mean model and the standard deviation of each
considered variable.

This approach couples the final solution with an
estimate of its statistical relevance which is not provided
by the fittest model identified by standard heuristic
methods.

We designed three synthetic models based on a
similar subsurface structure to check the identification
capacity of the proposed scheme as a function of
different-scale features: a low-velocity (VS<400 m/s)
surface cover (also including a low-velocity channel—
in refraction seismics often referred to as “hidden
layer”) is then followed by a higher velocity layer
(VS=800) overlying a hard bedrock (VS=2000 m/s)
(see Fig. 2).

Some tests were performed also to evaluate critical
aspects of inversion: frequency range of the dispersion
curve, number of layers and use of higher modes.

In order to evaluate the results for a real case we
eventually considered a data set acquired on a waste



Fig. 2. (a) The three models utilized for the tests (see also Table 1) and (b) their respective dispersion curves.
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disposal site in NE Italy (Monfalcone) for which a rich
data set is available, also including some boreholes (Dal
Moro et al., 2003b).

2. Fundamentals on genetic algorithms

Genetic Algorithms (GAs) have been originally
introduced by John Holland and his group at the
University of Michigan in the 1970s (Holland, 1975).
The fundamental aspect characterizing a genetically-
based evolutional scheme is theDarwinist paradigm that
the fittest survive and reproduce, the others disappear.
Among the several appealing features that character-
ize GAs some are particularly relevant to solve
optimization problems. The main advantage of this
class of optimizers is that they tend to elude the attraction
of local minima and their random-but-driven search
schemes try to reach an optimal solution by considering
all of the regions of a user-defined search space.

Differently from common linear methods, they do
not require an initial model to start the optimization. The
user designs a search space within which the possible
solutions are searched and evaluated. Moreover, as other
heuristic methods, GAs can be applied to problems
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where the function to be optimized exhibits disconti-
nuities that would prevent from the use of derivative-
based approaches.

An initial population composed by an arbitrarily-
fixed number of individuals (candidate solutions or, to
use the genetic lingo, chromosomes) is randomly
generated and their fitness determined according to the
discrepancy with respect to a desired characteristic.

This fitness value (determined bymeans of an objective
function) is then considered in the successive selection and
crossover operations: the fittest individuals (i.e. the ones
with the highest fitness values) are chosen to generate
offspring whose characteristics are partly taken from one
parent and partly from the other. Elitism is a strategy often
implemented to pass the best individual(s) of each
generation unchanged to the next generation in order to
avoid possible loss of good individuals.Mutation operators
allow good genes (that have never appeared before) to be
selected and should also ensure that a potentially good
component is not lost during reproduction and crossover
operations (Goldberg, 1989; Man et al., 2001).

The process can stop after a fixed number of
generations or when the fitness of an individual reaches
a certain previously-fixed value.

3. GAs for surface wave analysis

We implemented a series ofMatlab tools on the basis
of the GAOT (Genetic Algorithms for Optimization
Toolbox) optimization routines designed by Houck et al.
(1995).

The codes (SWIGA—Surface Wave Inversion via
Genetic Algorithms) can perform the inversion of
dispersion curves following five different procedures.
The user can select the optimum one according to
various possible a priori considerations and to the
desired degree of freedom of the system. The forward
modelling is calculated according to Lai and Rix (1998)
as solution of the eigenvalue problem of Rayleigh waves
in elastic vertically-heterogeneous media.

A more natural real-valued (floating-point format)
formulation of the problem was adopted rather than a
binary-encoded one. In fact GAs often prove to be more
efficient in the real-valued formulation than in the
binary one (Houck et al., 1995; Reeves and Rowe, 2003)
and such formulation allows a more straightforward
coding. Elitism was adopted in the generation offspring.

In the less constrained case all the four parameters
affecting Rayleigh wave propagation (VS, VP, density
and thickness) are set free.

As the most important parameters affecting Rayleigh
wave propagation are shear-wave velocity and layer
thickness (e.g. Xia et al., 1999) and with the aim of
decreasing the computational load by reducing the
number of variables we also adopted two further
strategies. For the first one we set the VP values
according to user-defined Poisson's values while for the
second one are fixed the densities.

We implemented two additional solutions to cope
with further specific situations. A fourth case performs
only the inversion of layer thickness by fixing the
vertical shear-wave velocity distribution. This can be
useful to invert several dispersion curves when
geological data suggest that lateral variations are mainly
due to geometrical variations (i.e. layer thickness) along
the profile rather than to modifications of the elastic
properties of the materials.

The last SWIGA procedure handles user-defined
relations between shear-wave velocity and density while
compressional-wave velocities are fixed on the basis of
user-defined Poisson's ratios—consequently, strictly
speaking, only VS and thickness represent variables.

In this paper we focus on the results obtained
using this last procedure by deferring a detailed com-
parison of the results obtained by fixing different
constraints to a next communication. Such choice is
justified by the fact that layer thickness and shear-
wave velocity are by far the most important para-
meters that influence Rayleigh wave propagation. The
number of layers and the range of each variable for
each layer must be defined by the user (thus defining
the search space).

The key element for any kind of optimization tool is
the model evaluation, which is performed by means of
an objective function (objFN) that allows a quantitative
estimation of the model (also called individual or
candidate solution).

In the present case we considered the root-mean-
square value of the difference between the observed and
calculated phase velocities (i.e. the dispersion curve):

objFN ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðvobsi−vcaliÞ2

n

vuuut
ð1Þ

where n represents the number of observed frequency–
velocity couples, vobsi the observed phase velocity at
the ith frequency and vcali the calculated velocity for the
considered model (individual of the current popula-
tion). This kind of formulation is also referred to as the
ℓ2-norm.

GAOT's search procedure seeks maxima of the
objective function and this justifies the negative sign on
the right side of Eq. (1).
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The inversion scheme we designed takes advantage
of the partial results of several preliminary and
independent “parallel” runs by selecting the best
individuals (models) of all of them as starting population
for the final run (Fig. 3 shows the scheme of such
algorithm).

The main objectives of such architecture are:

– to obtain a highly-accurate sampling of the search
space;

– to avoid problems related to the severe multi-
modality of the considered inversion problem;

– to obtain a large number of models to perform a
statistical assessment of the solution uncertainty via
Marginal Posterior Probability Density estimation
(see next paragraph).

The number of generations should be kept small for
the preliminary parallel runs and increased for the final
one.

The selection of the models for the starting
population of the final run is determined on the basis
of the maximum value of the objective function for each
singular preliminary run. By recalling that the objective-
function values are negative and the search procedure
seeks a maximum, we define the initial population for
the final run by selecting all the individuals with an
absolute objective-function value higher than n times
the best one (where n is a user-defined real number
greater than 1).

The peculiarity of such search procedure is justified
by the fact that models located in various and distant
regions of the search space can, due to the severe multi-
modality of the problem, have similar and relatively
good fitness values. The preliminary parallel runs aim at
Fig. 3. Code architecture.
identifying promising regions of the search space to be
eventually considered in the final-run optimization. In
the final inversion step, their genes are genetically
processed through selection and crossover to determine
new models that assume the best characteristics of each
of them.

We tested different selection, crossover and mutation
functions as well as parameter values but, as observed
also by Sen and Stoffa (1992), we noticed that non-
extreme variations of such functions and parameters
scarcely influence the performances of the algorithms
and we eventually adopted the values suggested by
Houck et al. (1995).

The selection function exploits three probabilistic
schemes for parents' selection: roulette wheel, ranking
method and tournament selection. Roulette wheel
selection method assigns to an individual a selection
probability proportional to its fitness while ranking
method and tournament selection use the evaluation
function to map individuals in an ordered set.

For the crossover operations we considered the
following three methods: simple point crossover,
arithmetic (complementary linear combinations of the
parents) and heuristic (linear extrapolation of the two
parents). Simple and arithmetic crossover require as
input only the two parents and the limits of each
variable, while the heuristic function also needs the
number of trials to be performed. As for the latter
function, we set a value of 3 so that if after three
attempts the offspring fitness value is worse than that of
the parents, the offspring is then set equal to the parents.

We adopted the following mutation functions (see
Houck et al., 1995 for details): boundary, which changes
randomly one of the parameters of the model either to its
upper or lower bound; uniform and non-uniform, that
change one of the parameters on the basis of a uniform or
non-uniform probability distribution respectively; multi-
non-uniform, which changes all the model parameters
according to a non-uniform probability distribution.

4. Mean model and standard deviations via MPPD

The determination of the statistical meaning and
accuracy of the solution of an inversion process in a
multi-modal problem is a critical and often under-
estimated issue. The approach we explored is based on
the determination of the Posterior Probability Density
(PPD) solution (e.g. Frazer and Basu, 1990; Stoffa and
Sen, 1991; Sen and Stoffa, 1992; Gerstoft and
Mecklenbrauker, 1998).

The result of an inversion procedure by means of
heuristic methodologies is usually simply the fittest



Table 1
Parameters of the three models utilized for the tests (VS is the shear-
wave velocity (m/s), ρ is the density (g/cm3), THK is the thickness
(m))

Layer Model#1 Model#2 Model#3

VS ρ THK VS ρ THK VS ρ THK

1 300 1.8 2 300 1.8 2 300 1.8 2
2 350 1.9 2 350 1.9 6 200 1.7 2
3 200 1.7 2 200 1.7 2 350 1.9 6
4 350 1.9 4 800 2.1 6 800 2.1 6
5 800 2.1 6 2000 2.4 ∞ 2000 2.4 ∞
6 2000 2.4 ∞

VP values are defined according to Poisson's ratio values equal to 0.4
when VS≤400, 0.3 for VS=800 and 0.25 for VS=2000.
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model. No statistical accuracy is then provided and, due
to the intrinsic indeterminacy of most of the inversion
problems, several different models that exhibit similar
fitness values may be equally likely.

We can estimate inversion accuracy by determining
mean value and standard deviations of each considered
variable through MPPD when a sufficiently large model
population is available.

As a general statistical definition, the a posteriori
mean model is determined according to the

hmi ¼
Z

dmmrðmÞ ð2Þ

where σ(m) represents the joint posterior probability
density defined as

r mð Þ ¼ eEðmÞP
eEðmÞ

ð3Þ

and E(m) is the fitness value for each considered model.
The standard deviations of the final model para-

meters identified via GA procedures are then calculated
by considering the square roots of the diagonal terms of
the covariance matrix CM determined by

CM ¼
Z

dmðm−hmiÞðm−hmiÞTrðmÞ ð4Þ

The MPPD for the ith parameter is then determined
according to (e.g. Gerstoft and Mecklenbrauker, 1998):

riðmiÞ ¼
Z

rðmÞdm1 N dmi−1dmiþ1 N dmM ð5Þ

where σ(m) represents the joint posterior probability
density previously evaluated and M the number of
model parameters.

The characteristics of the most appropriate popula-
tion to use to perform these calculations will be
discussed later on in this paper.

MPPD computation is a simple and powerful tool
that provides valuable insight into the solution uncer-
tainty. Nonetheless, in order to be statistically meaning-
ful, it requires a large number of data (i.e. models).

5. Inversion results

5.1. Synthetic data

To study the performance of the proposed inversion
scheme, we used a synthetic model simulating (from top
to bottom) soft low-velocity sediments and more
compact sediments (characterized by higher velocities)
lying over hard-rock basement. In the upper part we also
introduced a velocity inversion.

We considered only the fundamental mode, because
higher modes are rarely identifiable when such a soft
unconsolidated cover is present.

In the performed inversions, shear-wave velocity and
thickness are the independent variables because they are
the most important parameters that determine Rayleigh
wave propagation (Xia et al., 1999). Such choice
improves computation time and efficiency because the
number of variables is reduced: densities and compres-
sional-wave velocities are fixed on the basis of user-
defined VS–ρ relation and Poisson's ratios.

To test the performance of the method in more
realistic conditions (in which the user does not know the
real relationships), in the inversion of the synthetic
curves we intentionally introduced some errors in the
density and compressional-wave velocities. Poisson's
ratios were fixed to values slightly different from those
actually used in the calculation of the synthetic disper-
sion curves.

We adopted a simple rule and fixed a Poisson's value
of 0.35 when VS is lower than 1500 m/s and 0.25 for
higher velocities (the bottom bedrock half-space), thus
introducing an average error of approximately 7%
(compare values in Table 1).

A VS–ρ relation (ρ=0.77⁎ log10(VS)+0.15) was
used, which introduces a further error up to 12%. This
was derived from the VP–ρ relation proposed by
Gardner et al. (1974).

A crucial issue in dispersion curve inversion is the
number of layers. If no additional data are available,
subsurface layering is basically unknown and its
reconstruction is the main goal of any non-invasive
geophysical investigation. The number of layers can be
in principle considered an additional variable in our
optimization problem but this would determine a
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dramatic increase in the computation time. An arbitrary
and relatively large number of strata (i.e. an over-
parameterization of the problem) is then probably a
reasonable solution and a good compromise between
computation effort and effectiveness of the inversion
procedure and results. Therefore we basically adopted a
10-layer structure with thickness and velocity bound-
aries (search space) reported in Table 2, even if the
synthetic dispersion curves to invert were calculated
with an Earth model consisting of 5 or 6 layers (see Fig.
2 and Table 1). If not otherwise specified we considered
dispersion curves with frequencies up to 80 Hz.

Nine preliminary parallel runs, with a population of
7000 each, were considered to generate the models that
were successively passed to the final inversion step. The
number of generations for the preliminary runs was set
to 10 while for the final one to 250.

It can be noticed that the number of models necessary
to cover the entire search space in an enumerative search
scheme would be larger than 6⁎1015, in case velocity
and thickness increments of 10 m/s and 10 cm are
considered. Therefore almost eleven orders of magni-
tude separate the enumerative case from the total
number of models actually considered for the inversions
here presented (less than 70000). Such a rough
assessment offers an idea about the performances of a
GA-based optimization scheme.

The initial population for the final inversion was
determined by considering all the individuals with an
objective-function value greater than five times the best
one for each preliminary parallel run. For instance, if the
best individual of a preliminary parallel run has an
objective value equal to −10 all the models character-
ized by an objective-function value greater than −50 are
passed to the initial population of the final run. Fig. 4
shows an example of this kind of model selection. All
the models with an objective function greater than −30
Table 2
Search space for the inversion in the 10-layer case (VS inm/s; THK inm)

Layer Adopted boundaries

Max–Min VS Max–Min THK

1 400–150 3–0.5
2 400–150 3–0.5
3 400–150 3–0.5
4 400–150 3–0.5
5 400–150 3–0.5
6 400–150 3–0.5
7 900–200 5–1
8 1000–300 5–1
9 3000–1000 5–1
10 3000–1500 Half-space
(highlighted in the light-grey box) are selected for the
final-run initial population because the best model for
this preliminary run obtained an objective function
value of about −6. The procedure is repeated for all the
preliminary runs.

The basic idea for this procedure is that heuristic
methods provide surely good but not necessarily
optimal solutions in case the problem is particularly
complex. In the present case for example (in which we
basically used a 10-layer model and only thickness
and shear-wave velocity are considered as variables), it
can be noticed that the number of resulting variables is
equal to 19. As previously stated, preliminary runs aim
at identifying promising regions in the search space.
The models containing such genes are passed to the
final run for a further and computationally-intensive
genetic selection.

Fig. 5 highlights how the different preliminary runs
identify different promising regions for the fourth-
layer shear-wave velocity. It is worth underling that
the classes with higher frequencies are characterized
by similar objective functions (approximately ranging
from −11 up to −7) in spite of the fact that they span
a large area of the user-defined search space for that
variable. This is evidence that the solutions provided by
heuristic methods still contain an intrinsic indetermina-
cy that can be properly handled only by means of a
statistical analysis.

Moreover, the entire search space is covered so that
any velocity value can still be evaluated during the final
run even if belonging to models that were labelled as not
particularly fit during the preliminary runs.

The models selected from these preliminary runs are
then used as starting population for the final run in
which the number of generations is now much higher
(10 for the preliminary runs and 250 for the final one—
see Fig. 6).

Fig. 7a shows the inversion results for model#1. We
can notice that the general velocity trend is properly
identified and allows identifying the two deepest
velocity discontinuities. Moreover, the MPPD-derived
mean model appears more significant than the fittest
one, being typically closer to the real model (see also
inversions presented later on).

To evaluate further aspects involved in the dispersion
curve inversion, we performed three further tests over
the same model. In the first one, we included the first
higher mode and tested the results to evaluate whether
higher modes better constrain the inversion process.
Inversion was performed with the same parameters
previously adopted (see Table 2). Fig. 7b shows the
shear-wave vertical profile thus obtained.



Fig. 4. Model #1, first preliminary run: objective functions for 7357 models, partly (7000) present in the initial population, partly (357) generated in
the successive 10 generations. Models in the light-grey box are selected for the final-run initial population. Y-axis in logarithmic scale.
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The comparison with the results obtained by
considering the fundamental mode only (see Fig. 7a)
gives evidence of an improved focusing of the inversion
with smaller standard deviations that indicate a better-
constrained solution.
Fig. 5. Histogram of the values for the seventh variable (fourth-layer shear-
population size for the nine indicated populations equal to 229 models.
We evaluated the possible improvement of the
inversion results in a further test that was performed
by considering the same number of layers (six) actually
used to generate the synthetic dispersion curve
(model#1 in Fig. 2 and Table 1). Table 3 shows the
wave velocity). Bin dimension approximately equal to 2 m/s, average



Fig. 6. Fitness values over the passing generations.
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boundary conditions for the inversion. Fig. 7c shows the
results to compare with those obtained from the 10-layer
model reported in Fig. 7a.

As easily predictable, the final results in the 6-layer
case indicate a much better focused solution than in the
10-layer, one because of the lower degrees of freedom of
the system.

We performed another test by considering a limited
frequency range. In fact, in real-world seismics the
frequency spectrum resulting from the application of a
low-frequency source (as for instance a sledgehammer)
over unconsolidated sediments often suffers from lack
of high frequencies.

Fig. 7d shows the shear-wave vertical profile
obtained when only frequencies lower than 40 Hz
are used to a 10-layer structure. As it can be no-
ticed, mean model and standard deviations indicate
that the solution does not significantly differ from
the one obtained by using a larger spectrum (80 Hz;
Fig. 7a) and, in both cases, the mean model appears
somehow more meaningful than the purely GA-
based solution (fittest model). However values in the
uppermost portion of the sequence appear somehow
less precise that in the previous case (compare with
Fig. 7a).

We remark that if we consider a VS equal to 300 m/s
(uppermost layer) and a 40 Hz component, the
corresponding wavelength is 7.5 m. According to the
λ/2 rule of thumb (e.g. Xia et al., 2004) this component
is able to sense depths of approximately 4 m and
consequently it would be rather inadequate to discrim-
inate the first layer from the second (see model
parameters in Table 1).

Two further tests were performed in order to evaluate
the identification power of the method. The models are
variations of the model#1, with the low-velocity
channel placed at different depths (see Fig. 2a, models
#2 and #3).

As for model#1 depth and velocity of the bedrock are
identified with good precision (see Fig. 8a and b) and
the low-velocity channel is also identified with
reasonable accuracy.

It is worth stressing that the resulting mean model is
not a genetically-created model. Such a model is not the
result of any genetic event but the product of the MPPD
analysis that comparatively evaluated each singular
variable with respect to the rest of them on the basis of
the fitness of each model.

A key issue in MPPD calculation is the population of
models to use for such operation. Three options are
actually possible based on the designed inversion
scheme: (a) to consider only the models randomly
generated for the initial populations of the preliminary
runs, (b) to consider all the models generated and
evaluated in the preliminary runs (the initial populations
plus the models generated during the ten generations
adopted for the present case) or (c) to collect the entire
set of models generated in the whole process, thus
including also the models generated during the 250
generations of the final run.



Fig. 7. Final solutions (fittest model and MPPD-defined mean model) for model#1 when (a) only fundamental mode is considered, (b) fundamental
and first higher mode are considered, (c) inversion is performed by considering a 6-layer model (instead than a 10-layer one) and (d) dispersion curve
is cut to 40 Hz (instead of 80). The background grey area represents the search space.
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The decision about the population to be considered
must be clearly taken by considering the computational
and statistical consequences (see also Stoffa and Sen,
1991). It is apparent that the models of the preliminary
initial populations (case a) can provide a somehow poor
estimate due to the fact that most of such randomly-



Table 3
Search space for the inversion of model #1 in the 6-layer case (VS in m/
s; THK in m)

Layer Adopted boundaries

Max–Min VS Max–Min THK

1 400–150 3–0.5
2 400–150 3–0.5
3 400–150 3–1
4 400–150 6–2
5 1500–300 8–3
6 3000–1500 Half-space
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generated models are clearly “weak” (i.e. often
extremely far from any good model and then character-
ized by very low fitness values). As a consequence, the
estimated mean model is quite unstable and the standard
deviations are large (see Fig. 9a). On the other extreme
side (case c), a MPPD calculation performed by
considering the entire set of generated models easily
leads to a final mean model very close to the one
genetically determined (best fitness) and to very small
standard deviations (Fig. 9c). This is easily understood
when we consider that, during the final run, the
offspring converge towards a certain solution. Such
model will strongly bias the MPPD analysis due to its
high fitness values.
Fig. 8. Final solutions (fittest model and MPPD-defined mean model) for mo
We then decided to select a population constituted of
the models generated for the initial populations of the
preliminary runs plus their 10-generation offspring
models (case b). This is a kind of compromise between
the two extremes that avoids the indeterminacy of the
first case and the strongly-biased and exceedingly-
constrained solution of the second (Fig. 9b). In this
respect it is also worth noticing the even distribution of
models in Fig. 5.

To further clarify this aspect Fig. 10 shows a close up
of the MPPD values just for the shear-wave velocity of
the seventh layer for all of these three possible choices
(example is taken from the model#1 inversion). If we
consider only the purely-random models of the
preliminary-run initial populations the MPPD values
are very dispersed and the standard deviation accord-
ingly large (Fig. 10a). In the opposite case (the complete
set of models evaluated in the entire GA-based
procedure), a concentration of solutions occurs around
a specific value (very close to the final genetic fittest
solution) thus determining an extremely small standard
deviation because of an extremely-biased population
(Fig. 10c).

We can further analyse the problem by considering
the histograms of the objective-function distribution for
the three possible cases (Fig. 11). The purely-random
dels #2 and #3. The background grey area represents the search space.



Fig. 9. Model#1 inversion. Mean model and standard deviations calculated according to MPPD evaluation performed by considering: (a) the models
generated for the initial populations of the preliminary runs; (b) all the models evaluated during the preliminary runs; (c) all the models of the entire
GA-based procedure (see text).
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case (Fig. 11a) shows a distribution very close to the
Gaussian while the high narrow peak determined by the
complete set of evaluated models (Fig. 11c) puts in
evidence a strongly-biased population.

The small peak (Fig. 11b) determined when consid-
ering all the models generated during the preliminary
runs (then also considering the 10-generation offspring)
must be regarded as evidence of a meaningful set of
models for the MPPD evaluation, whose favourable
characteristics are highlighted by the data shown in Figs.
9b and 10b.

The population was checked and redundant models
deleted to avoid the biasing effect of duplicate models in
the MPPD calculation.

5.2. Field data

The designed algorithm was used to invert a data set
acquired in a waste disposal site in NE Italy. This is
essentially characterized by an 18-m-thick unconsoli-
dated-sediment sequence lying over a limestone
basement. A number of geophysical surveys (surface
Ground-Penetrating Radar—GPR, borehole Vertical
Radar Profiling—VRP, resistivity, magnetometry)
were conducted (Dal Moro et al., 2003b) and results
were compared with borehole data and measurements
on samples with the goal of determining the identifi-
cation power of each methodology and classifying
waste typology and extension to plan future remedia-
tion acts.

Because of the poor geotechnical characteristics of
the uppermost layers and in particular the extremely
heterogeneous and unconsolidated superficial waste
level (about 2 m thick), seismic records present a
limited spectral content and, as far it concerns the P-
wave component, a low signal-to-noise ratio strongly
dominated by ground roll components.

An example of velocity spectrum computed accord-
ing to the phase shift method (Park et al., 1998; Dal
Moro et al., 2003a) is reported in Fig. 12a. As the small
differences among the dispersion curves acquired along
the acquisition profile are more evident at the high
frequencies, they are mostly due to lateral heterogene-
ities of the uppermost layer evidenced also by the GPR
and resistivity surveys (Dal Moro et al., 2003b).

Similarly to the strategy adopted for the inversion of
the synthetic data, we considered as variables only VS

and thickness while fixing ρ and VP according to the
VS–ρ relation mentioned in the previous section and the
Poisson's ratios reported in Table 4. These latter were



Fig. 10. Model#1 inversion. MPPD distribution: shear-wave velocity
values for the seventh layer (same cases as for Fig. 9) (diamond:
MPPD-derived mean model; triangle: final purely GA solution—
fittest model). Different scales are used to highlight the data.

Fig. 11. Model#1 inversion: histograms of the objective functions
(same cases as for Figs. 9 and 10).
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Fig. 12. Field dataset: (a) observed velocity spectrum and retrieved dispersion curves; (b) vertical shear-wave velocity profiles from dispersion curve
inversion; the background grey area represents the search space (see Table 4). Also shown is the borehole stratigraphy: (1) waste, (2) mixed sand and
clay, (3) sandy silt, (4) gravel, (5) fractured limestone.
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set according to values commonly adopted for the
relevant stratigraphic units (0.45–0.4 for variously silty
alluvia, 0.25 for gravel and 0.2 for the limestone
bedrock) (e.g. Ivanov et al., 2000; Adme, 2004).

The results of the performed inversion (Fig. 12b)
seem to be characterized by a certain degree of
uncertainty in particular for the deepest part of the
vertical profile (see standard deviations associated with
the retrieved shear-wave velocities) very likely due to
the limited frequency range of the dispersion curves
(approximately 4–19 Hz). In spite of this, the best and
the MPPD-defined models still appear furnishing a
meaningful solution that appears in fairly-good agree-
ment with the borehole stratigraphy also shown in Fig.
12. In fact it can be noticed that the depths of the two
deepest velocity discontinuities result coherent with the
borehole data and can then be interpreted as the effect of
the silt–gravel and gravel–limestone contacts (see also
Dal Moro et al., 2003b).
Table 4
Field dataset: search space and Poisson's values adopted for the
dispersion curve inversion

Layer Max–Min VS Max–Min THK Poisson's ratio

1 250–80 4–1 0.45
2 400–100 6–1 0.45
3 400–100 6–2 0.40
4 900–220 7–2 0.25
5 2500–900 Half-space 0.20
6. Conclusions

Genetic algorithms, as members of the class of
global-search optimization schemes, represent an ap-
pealing inversion tool because generally little sensitive
to local minima/maxima and therefore particularly
suitable for non-linear multi-modal problems.

Similarly to the other heuristic methods, GAs adopt a
user-defined search space within which solutions are
sought and evaluated. This means that, unlike linear
methods, they do not require any starting model that
would risk to be attracted by some local minimum (or
maximum) thus eventually furnishing an erroneous
solution.

The wide search space boundaries here adopted
simulate conditions in which no a priori knowledge is
available: the number of layers is large and velocity and
thickness boundaries are kept remarkably broad. The
general trend in which velocity increases with depth can
be considered as representative of a very general
velocity distribution based on the shape of the
considered dispersion curve, on the VS–VR relationship
(e.g. Viktorov, 1967) and on the λ/2 rule of thumb (e.g.
Xia et al., 2004).

The proposed approach (composed of several
preliminary “parallel” runs and a final one) can be
considered as an improvement of the GA-based
inversion scheme with the following extensions: the
identification of a mean model and the computation of
standard deviations for each considered variable.
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Relevant aspects to consider for the performance
analysis are the identification of the bedrock and
the contact between the uppermost low-velocity
cover (VS<400 m/s) and a deeper higher velocity
layer (VS=800 m/s).

We noticed that in all the examined cases the bedrock
depth and velocity are identified with good precision.
This represents a first important achievement because it
demonstrates an identification ability that cannot usually
be equalled by common linear inversion procedures.

The contact between the uppermost low-velocity part
(VS<400 m/s) and the higher velocity one (VS=800 m/
s) was also properly imaged in all the cases. The
identification of the velocity inversion (located at
different depths in the different models) seems more
challenging. The shallow low-velocity channel was
identified by all the solutions obtained from the
dispersion curve inversion but its depth and thickness
are not always precise probably due to an intrinsic
indeterminacy of the method (Klimeš, 2004). The
reliability of the retrieved model must be then regarded
as a key point and efforts should be made in order to
design survey and inversion techniques to eventually
exploit different wavefield components (reflection,
refraction, P and S waves) in a cooperative inversion
scheme (Dal Moro and Pipan, 2006-this issue).

We also investigated the effect of two velocity
spectrum features to analyse their effects on the
accuracy of the final solution: the inclusion of the first
higher mode and a frequency band limitation.

When the first higher mode is considered together
with the fundamental one the results give evidence of a
reduction of standard deviations and a correlated better-
focused solution. As for the bandwidth, for the
considered case we did not notice a significant
improvement in the result by doubling the frequency
range from 40 to 80 Hz.

An apparent improvement in the final model occurs
when the number of layers specified for the inversion
process matches the real one (i.e. the one actually used
in the synthetic curve computation). In the present case
(we considered the correct 6-layer model instead of the
10-layer one), this is most likely due to the fact that the
number of variables is considerably reduced (from
nineteen to eleven) and the optimization procedure can
better handle their evaluation.

In several cases we observed that the mean model
derived from the MPPD analysis is better than the purely
genetic one (the fittest model). This shows that the
extreme complexity of the problem (its multi-modality
and the number of variables) requires a statistical
approach to provide meaningful and robust solutions
and uncertainty evaluation, being that even global-
search methods (like GAs) do not necessarily ensure
optimal solutions.

A detailed comparative analysis of role and effects of
different inversion strategies, initial and final-run
population size, preliminary-run number and genetic
operators is in progress and will be the subject of a
future communication.

Results of the inversion performed on a field dataset
acquired in Monfalcone (NE Italy) were presented and
validated by borehole stratigraphy.
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