

www.holisurface.com

copyright © 2024 Tutti i diritti riservati

16 luglio 2024

The more you know, the less you need

Yvon Chouinard

Le tecniche implementate nel software *HoliSurface*[®] consentono di analizzare le onde di superficie e i dati vibrazionali registrati secondo una serie di metodologie particolarmente efficienti che, di base, richiedono l'utilizzo di un **unico geofono a 3 componenti (dati attivi HS e dati passivi HVSR) o 4 geofoni verticali disposti secondo un raggio molto ridotto (dati passivi per MAAM).**

I dati vibrazionali registrati su una struttura (esempio edificio o ponte) vengono utilizzati per determinare le frequenze proprie, separare i modi (*torsionali* e *flessionali*) e definire il *damping*.

Il software HS è dunque molte cose:

- Metodologia *HoliSurface[®]* (cioè l'ottimizzazione in chiave multicomponente della tecnica sismologica per eccellenza: l'analisi delle velocità di gruppo)
- Analisi e inversione HVSR (anche in modalità batch)
- MAAM (Miniature Array Analysis of Microtremors)
- Analisi dati vibrazionali di cantiere
- Analisi dati vibrazionali su strutture (frequenze e modi propri)
- Analisi SSR/SSRn per la definizione della reale amplificazione di sito
- Risposta Sismica Locale (con regolarizzazione degli spettri)
- Gestione di foto georeferenziate

Esistono poi svariati altri strumenti per una miriade di applicazioni (sezioni V_S 2D, *editing* e confronto dei dati e molto altro).

Per svolgere tutto questo forniamo un *sistema di acquisizione* pensato *ad hoc* (utile anche per *qualsiasi* altro metodo di sismica multicanale). Se invece già possiedi un tuo sismografo, al fine di verificarne le caratteristiche rispetto le metodologie implementate in HS, è auspicabile un test utile a chiarire una serie di dettagli tecnici.

Un'indispensabile introduzione:

cos'è il software e il sistema HoliSurface®?

Il software *HoliSurface*[®] (o, più brevemente, **HS**) consente di effettuare vari tipi di analisi di dati sismici (attivi e passivi) e vibrazionali (analisi dinamiche su edifici e normative DIN/UNI/ISO) nonché analisi utili, ad esempio, in studi di micro-zonazione sismica (SSR - *Standard Spectral Ratio* e SD - *Spectral Difference*).

Tutte le metodologie implementate in *HoliSurface*[®] sono accomunate da un **puntuale** e **maneggevole sistema di acquisizione e analisi** concepito per utilizzare il software HS in modo completo e assolutamente perfetto anche per il classico mondo multi-canale (più corretto parlare di *multi-offset*).

Dal punto di vista pratico, l'utilizzo congiunto di **HS** e di un adeguato *sistema* di acquisizione consente di svolgere una ricchissima serie di analisi, a fronte di operazioni di acquisizione (attive e passive) estremamente semplici.

Si tratta, di fatto, di avere (adeguatamente "combinati") gli elementi qui di seguito elencati:

- ✓ 1 sismografo a (minimo) 4 canali (al quale è cioè possibile collegare 4 geofoni)
- ✓ 1 geofono triassiale (per una nutrita serie di acquisizioni di sismica attiva e passiva)
- ✓ 4 geofoni verticali (per MAAM, ma non solo)

La qualità di questi elementi deve essere di prim'ordine e qualsiasi tentativo di arrangiare un sistema HS *fai-da-te* rischia di produrre qualcosa di inaffidabile.

La parola chiave è infatti *sistema*, intendendo con tale termine una specifica e ben definita combinazione di elementi tra loro congruenti. Se anche un solo elemento di tale sistema non dialoga correttamente con il resto del *sistema* viene a cadere l'intero senso del tutto.

Per questo motivo invitiamo chi desideri entrare nel mondo *HoliSurface*[®] a contattarci per studiare assieme la soluzione migliore per le proprie esigenze. Con il sistema di acquisizione e analisi HS si potranno svolgere in modo semplice e logico le seguenti acquisizioni/analisi:

Sismica attiva

1) analisi congiunte delle velocità di gruppo delle componenti Z R e T, della curva RVSR e del moto della particella legato all'onda di Rayleigh (*Rayleigh-wave Particle Motion*, RPM).

La tecnica HS in pratica: *una* sorgente e *un* (unico) geofono triassiale a registrare il segnale prodotto [lo stesso geofono 3C è poi utilizzato anche per l'HVSR e molto altro]

Sismica passiva e applicazioni ingegneristiche

1) analisi HVSR e MAAM

2) analisi DIN/UNI/ISO, SSR (Standard Spectral Ratio) e SD (Spectral Difference)

3) analisi delle vibrazioni di un edificio tanto secondo tecniche semplificate che dinamiche (utili a identificare e separare moti flessionali e torsionali).

La *questione di fondo*: com'è possibile ottenere con 1 sola traccia quello che le "MASW" forniscono con 12/24 canali

In sintesi la domanda da porsi è: perché lavorare con dati *multi-offset* (necessari per la determinazione delle *velocità di fase*) quando con le *velocità di gruppo* (che possono essere computate utilizzando **un unico** geofono) si possono ottenere gli stessi risultati? Qui di seguito l'analisi FVS delle *velocità di fase* (sopra) computate considerando tutte le 10 tracce mostrate e l'analisi FVS delle *velocità di gruppo* (sotto) computate considerando <u>UNICAMENTE</u> l'ultima traccia (vedi quadratino rosso in corrispondenza dell'**ultima** traccia). **Il modello del sottosuolo è lo stesso.**

Analisi FVS delle <u>velocità di fase</u> considerando tutte le <u>10 tracce</u> ["MASW" standard]: i colori in sottofondo rappresentano lo spettro di velocità di fase dei dati di campagna mentre le *contour lines* nere sovrapposte si riferiscono al modello individuato (vedi l'ottima sovrapposizione?)

Analisi FVS delle <u>velocità di gruppo</u> considerando <u>1 sola traccia</u> (quadratino **=**)

www.holisurface.com

La risposta alla *questione di fondo non* è chiaramente rintracciabile seguendo la logica e le evidenze tecnico-scientifiche, sempre e anche considerando che un professionista non è pagato per "effettuare una MASW" ma per determinare i valori delle V_S (seguendo il metodo più appropriato in base al sito e agli obiettivi - e di metodi ve ne sono moltissimi).

Si ricordi e consideri che il metodo utilizzato *da sempre* dai sismologi di tutto il mondo per ottenere informazioni sui materiali crostali (sfruttando i segnali provenienti dai terremoti) è dato proprio dall'analisi delle **velocità di gruppo**.

HS rappresenta l'ottimizzazione in chiave multi-componente e FVS della più classica delle tecniche sismologiche: l'analisi MFA (*Multiple Filter Analysis*), che alcuni autori chiamano FTAN (Frequency Time ANalysis).

Tre esempi:

https://indico.ictp.it/event/a0367/session/8/contribution/6/material/0/1.pdf [in inglese]

https://www.sciencedirect.com/science/article/abs/pii/S0926985111000735 [in inglese]

https://www.academia.edu/25360235/Geologia Tecnica e Ambientale 2005 [in italiano]

Acquisizione HS per la ricostruzione delle velocità (Vs) dei fanghi di lavaggio di una cava. Si può notare come sia stata eseguita anche una MAAM e come il geofono centrale sia ora invece utilizzato come geofono trigger per la sismica attiva HS.

Lo spessore di circa 1 m ha consentito/suggerito di utilizzare un *offset* di soli 3 m. Si noti il geofono trigger (giallo) all'estrema sinistra e il geofono 3C (ricevitore, rosso) sulla destra. I tre geofoni gialli a triangolo sulla destra sono stati utilizzati per una MAAM (al momento della foto il geofono centrale è utilizzato come geofono trigger per l'acquisizione HS).

La foto sopra riportata si riferisce ad una vecchissima acquisizione, il geofono triassiale (3C) che consigliamo e forniamo è il seguente: http://download.winmasw.com/documents/Holi3C geophone Eliosoft.pdf

CONTENUTI

Un'indispensabile introduzione:	4
cos'è il software e il sistema HoliSurface®?	4
Principali abbreviazioni	11
Il sistema HoliSurface® in breve	29
Sismica attiva e passiva: breve ma importante sottolineatura	33
Requisiti di sistema	34
2. Installazione	37
3. Licenza d'uso e USB dongle	41
4. La tecnica HoliSurface®: acquisizione dati	43
Cosa devo acquisire se desidero ottenere un profilo delle Vs privo di ambiguità e	
problematiche varie?	47
Due modalità per acquisire dati HS + HVSR	48
Acquisizione congiunta MAAM + HVSR	49
Tre modi per generare le onde di Love	50
5. Generali procedure di utilizzo	53
Le componenti sismiche	57
Assemblare i <i>files</i> delle onde di Rayleigh e Love	58
Foto e dati GPS nelle applicazioni ELIOSOFT (winMASW [®] , HS [®] & ELIOVSP [®])	60
6. Preparazione dei dati e modellazione diretta	61
6.1a Acquisizioni ibride: estrazione dati attivi ed elaborazione dati passivi HVSR	63
6.1b Acquisizioni ibride con sistema SmartSolo	66
6.2 Modulo "HS (<i>disp) +HVSR</i> " [Dispersione + HVSR]	68
6.3 Analisi RPM (Rayleigh-wave Particle Motion)	74
6.4 Modulo <i>HoliSurface[®]</i>	81
7. Moduli di inversione automatica	91
7.1 Pannello inversione a singola componente ("Single-Comp Inversion")	95
7.2 Modulo 2C inversion (inversione congiunta di 2 componenti)	98
7.3 Modulo 3-obs Inversion (inversione a tre <i>observables</i>)	102
7.4 Un esempio di inversione congiunta di 3 observables considerando solo dati	
attivi [Z + R + RPM]	103
8. Alcune raccomandazioni e suggerimenti	108
9. Analisi, modellazione e inversione dell'HVSR	110
Analisi: determinazione della curva HVSR	112
Ascolta (e salva) i tuoi microtremori	133
Time Lapse dei dati nel dominio delle frequenze (spettrogrammi time lapse)	134
Componenti industriali	136
Rimozione automatica di segnali industriali	145
Modellazione della curva HVSR	150
Inversione automatica della curva HVSR	154
10. Analisi vibrazionali (DIN 4150, UNI 9614 e ISO 2631)	15/
11. Inversione congiunta spettro velocita di gruppo + HV	1/3
12. Acquisizioni e analisi MAAM	1/5
12.1 Acquisizioni	1/8
12.2 Le analisi	190
12.3 Esempi di elaborazione MAAM	193
13. SSR (Standard Spectral Ratio), SSRn (SSR-noise) SD (Spectral Difference)	195
15. Analisi vibrazionali su strutture per la definizione degli <i>elgenmodes</i>	203
15.1 Tipologie di acquisizioni e analisi	200
15.2 ACQUISIZIONE	209
15.4 Analisi Grivi e Gvivi (18000118110818)	21J
15.5 Analisi del <i>damping</i> de dati "attivi"	229 221
TATA ATTAINET FILL TRACTICULTURATING CONTRACTOR	Z.74

16. Spettri di risposta (HSL – Hisposta Sismica Locale)	.236
Site Response nelle recenti release di winMASW [®] Academy e HoliSurface [®]	.246
Alcune importanti note	.249
Regolarizzazione degli spettri	.251
17. Dati a corredo (per il proprio <i>training</i>)	.253
18. Raccomandazioni: procedure di analisi suggerite	.255
BIBLIOGRAFIA	.257
Appendice A: moduli elastici	.267
Appendice B: formula di Stesky	.268
Appendice C: creazione sezioni 2D	.269
Appendice D: strumento NSPT - VS	.279
Appendice E: strumento comparazione dati attivi (SAF/seg2)	.281
Appendice F: tool di conversione dati da formato seg a SAF	.284
Appendice G: tool per lo stack (ottimizzato)	.285
Appendice H: alcuni esempi di quello che puoi fare con HS (piccoli casi studio in	n siti
complessi)	.288
Appendice I: equipaggiamento di campagna - una check list	.329
Appendice L: ottenere dati in mm/s con i nostri strumenti	.330
Appendice M: cenni sul sistema di acquisizione HoliSurface® (acquisitore, cavo sismi	ico e
geofono triassiale da noi forniti)	.334
Appendice N: gestire e sfruttare il cavo HoliSurface	.336
Appendice O: plottare curve HVSR multiple (sezioni HVSR 2D)	.342
Appendice P: concatenare dati SAF (3 componenti)	.348
Appendice Q: gestione di foto multiple geo-referenziate	.350
Appendice R: elaborazione batch di dati HVSR multipli [anche per ricostruzioni 2D]	.358
Appendice S: software HS-QC [Quality Check] - il tuo assistente di campagna	.369
Appendice T: Strumento DTM (Digital Terrain Model)	.380
Appendice U: regolarizzazione spettro di risposta (<i>utilities</i>)	.383
Appendice V: computo distanza tra foto georeferenziate	.385
Appendice Z: il tool SEGY2ELIOSOFT per gestire dati segy passivi	.387
Risoluzione problemi e Assistenza	.392
Servizio Analisi Dati Sismici	.398
II 2D ai massimi livelli: servizio di elaborazione ADAM-2D	.400

Due nodi (terne senza cavo sincronizzate via GPS - hai notato la terna in lontananza?) per l'acquisizione di dati *ibridi* (attivi e passivi) per l'analisi congiunta HoliSurface[®] (velocità di gruppo di 3 componenti e curve RPM e HVSR): uno zainetto e via!

www.holisurface.com

Software per analisi vibrazionali e inversione olistica delle onde di superficie secondo metodi attivi e passivi particolarmente snelli ed efficienti

Metodologia oggetto di brevetto internazionale

I nostri social media

Consigliamo in particolare la nostra pagina *Facebook* frequentemente aggiornata con piccoli casi studio, novità e vari utili e pratici suggerimenti.

https://www.facebook.com/HoliSurface

You Tube https://www.youtube.com/user/winMASW/videos

ResearchGate https://www.researchgate.net/profile/Giancarlo_Dal_Moro

THE LIMITS OF MY LANGUAGE MEAN THE LIMITS OF MY WORLD

Principali abbreviazioni

definizione

brevi note

MASW	Multi-channel Analysis of Surface Waves	Metodologia per la determinazione delle proprietà dispersive [velocità di fase] di un mezzo a partire da dati attivi multi-offset. La matematica ha diverse possibili varianti (analisi <i>fk</i> , T-p o <i>phase shift</i> (certamente la migliore). Al fine di superare la non-univocità è raccomandato l'utilizzo di dati multi-componente
MFA / FTAN	Multiple Filter Analysis / Frequency-Time ANalysis	Metodologia che consente di determinare le velocità di gruppo (cioè le proprietà dispersive) da un'unica traccia sismica (cioè dai dati raccolti ad un unico offset)
FVS	Full Velocity Spectrum	Metodologia di analisi della dispersione svolta <i>non</i> tramite <i>interpretazione</i> delle curve modali ma attraverso inversione/modellazione dell' <i>intero spettro di velocità</i> (quindi l'intera matrice velocità-frequenza). In questo modo non è necessario dare nessuna interpretazione degli spettri di velocità. Possibile sia analizzando velocità di fase [approccio multi-offset] che di gruppo [approccio single-offset], sia con dati a componente singola che con dati multi-componente [analisi congiunta].
HS	HoliSurface [Holistic Analysis of Surface Waves]	Miglioramento della tecnica MFA/FTAN su dati multi- componente, con l'aggiunta dell'analisi delle curve RPM e/o RVSR e con analisi della dispersione tramite analisi FVS [<i>Full Velocity Spectrum</i>]
RPM	Rayleigh-wave Particle Motion	Curva che esprime il moto della particella dovuta al passaggio dell'onda di Rayleigh in funzione della frequenza e termini di moto progrado/retrogrado

pag. 12		HoliSurface®
RVSR	Radial-to-Vertical Spectral Ratio	Rapporto tra gli spettri di ampiezza della componente radiale e di quella verticale in caso di dati attivi (in buina misura rappresenta l'ellitticità dell'onda di Rayleigh). Utile, alle frequenze più basse, nell'analisi congiunta con i dati di dispersione
HVSR	Horizontal-to-Vertical Spectral Ratio	Rapporto tra le componenti orizzontali e quella verticale in caso di dati passivi (microtremori). Dipende dalla combinazione di onde di Rayleigh e di Love (fattore α)
ReMi	Refraction Microtremors	Tecnica per la determinazione delle proprietà dispersive [velocità di fase] di dati passivi acquisiti con array lineare (del tutto analoga alla matematica utilizzata per la "MASW")
SPAC	SPatial AutoCorrelation	Metodologia grazia alla quale è possibile determinare le proprietà dispersive [velocità di fase] di dati acquisiti secondo array a geometria circolare
ESAC	Extendend Spatial AutoCorrelation	Metodologia matematicamente simile (ma non identica alla SPAC) che consente di considerare dati acquisiti secondo una <u>qualsiasi</u> geometria (inclusa quella lineare – che spesso consigliamo [vedi manuale winMASW [®]])
PS- MuCAA	Passive Seismics – MUlti- Component Amplitude Analysis	Tecnica per l'analisi di dati multi-componente passivi finalizzata a determinare una serie di rapporti spettrali tra cui l'HVSR (vedi winMASW [®] Academy)
MAAM	Miniature Array Analysis of Microtremors	Metodologia per la determinazione delle proprietà dispersive [velocità di fase] grazie a dati acquisiti con geometria circolare con raggi particolarmente limitati (array miniaturizzati)
SSR	Standard Spectral Ratio	Rapporto tra gli spettri di ampiezza registrati in un sito di cui vogliamo valutare l'amplificazione (effetto di sito) e in un sito di riferimento (affioramento roccioso). Si considerano dati registrati durante un sisma
SSRn	Standard Spectral Ratio - noise	Come l'SSR ma considerando i microtremori
GHM	Gaussian-filtered Horizontal Motion	Metodologia per determinare le frequenze proprie e il tipo di modo (flessionale, torsionale o misto) di una struttura (edificio ecc) da dati vibrazionali acquisiti (anche <i>non</i> in sincrono) in due o più punti della struttura
Sismica a rifrazione	Spesso viene richiesta per mera dipende dagli obiettivi. Quando s struttura 2D della parte più supe l nei casi più fortunati, non raggiur in cui sappiamo esserci variazio rapidamente verificare confronta [vedi software HS-QC]).	a inerzia/abitudine. La necessità (o utilità) delle tecniche si "deve" usare la rifrazione? Quando serve conoscere la rficiale (la rifrazione ha scarsa profondità di indagine che, nge 1/3 della lunghezza dello stendimento) di una sezione oni laterali (cosa che in campagna si può facilmente e ando gli HVSR su 2 o 3 punti della sezione di interesse
	Quando serve, usare meno di 16 i dati necessari a quell'obiettivo. acqua (anche lontani dalla satur vedere solo l'acqua.	/24 canali è sconsigliabile perché non si raccoglierebbero Onde P o SH? Se siamo su suoli soffici con presenza di razione) le P sono sconsigliatissime perché si rischia di

Se uno di questi acronimi non ti è sufficientemente/perfettamente chiaro in relazione sia agli aspetti teorici che pratici, non potrai sfruttare le moltissime potenzialità dei nostri *software*. In tal caso suggeriamo di studiare i documenti/libri/articoli segnalati in questo manuale e/o partecipare ai nostri **workshops** e **webinars**.

ELIOSOFT FORNISCE:

SISTEMI DI ACQUISIZIONE

Sismografi, cavi sismici, geofoni e accessori: *sistemi completi* e *ottimizzati* per l'acquisizione olistica di dati sismici multi-componente e vibrazionali.

Geofoni verticali e orizzonali (da 4.5 e 2 Hz) con sostegni per lavorare su asfalto.

SOFTWARE

ELABORAZIONE DATI

Vedi ad esempio il nostro servizio ADAM2D

www.holisurface.com

GEOFONO DA FORO CON DOPPIO SENSORE (due geofoni 3C posti a 1 m di distanza l'uno dall'altro). Per dettagli <u>vedi il manuale di ELIOVSP</u>, il nostro software per l'analisi congiunta di dati di pozzo e curva HVSR.

www.holisurface.com

Scegli la tua strumentazione in modo consapevole

Eliosoft fornisce e raccomanda il suo sistema integrato di acquisizione HoliSurface®.

Sismografo 24bit da utilizzare anche solamente con il geofono triassiale (per tutte le metodologie implementate in HS) ma che può essere economicamente portato sino a 24 canali [e oltre] (per tutta la sismica multi-canale *multi-offset*).

Cavo sismico composito HoliSurface® (9/12+3 canali).

Geofoni verticali e orizzontali da 4.5 o 2 Hz (per acquisizioni MASW e ESAC): ricorda che per le acquisizioni attive (MASW), le onde di Rayleigh (la loro componente radiale) e le onde di Love possono essere acquisite utilizzando solamente i geofoni orizzontali.

Geofono triassiale passivo equalizzato via software fino a circa 0.2 Hz e ottimizzato (vedi anche cavo HS 9+3) per acquisizioni HS, HVSR e vibrazionali anche congiuntamente a MAAM ed ESAC (o ReMi).

Geofoni verticali e orizzonali (da 4.5 e 2 Hz) con sostegni per lavorare su asfalto.

Le tue clip: quando ordini i tuoi geofoni ricordati di indicarci se il tuo cavo sismico monta *take-out* di tipo *Split Spring* o *Mueller*.

Müller (o Mueller)

HoliSurface[®]

dispositivo AREA51 e accessori per acquisizioni MAAM su asfalto e suolo

piastra di battuta in polietilene (per sismica attiva): leggerezza, robustezza ed efficienza

> geofoni e sismografi classici e senza cavo

software winMASW®

Eliosoft fornisce anche geofoni (di tutti i tipi) e vi può indicare gli strumenti che meglio si adattano e ottimizzano le procedure possibili con il software HoliSurface[®]. La costante evoluzione suggerisce di contattarci preliminarmente per avere informazioni e consigli aggiornati in fatto di hardware "ideale" per sfruttare appieno e al meglio la potenza e "compattezza" del software HoliSurface[®] (che è un insieme di svariate metodologie di analisi).

Semplicemente tutto quello che puoi desiderare di fare nell'analisi delle onde di superficie secondo tecniche multicanale: MASW e MFA (Rayleigh e Love), ReMi, ESAC/SPAC, PS-MuCAA (Passive Seismics – MultiComponent Amplitude Analysis), attenuazione onde di Rayleigh, rifrazione 1D onde P e SH, HVSR e un'infinita serie di *tools* per il trattamento delle tracce sismiche.

Inoltre, allo scopo di evitare di acquistare strumentazione inutile, ridondante e/o inadeguata, prima di acquistare un sismografo o un PC contattaci e sapremo darti indicazioni puntuali.

L'errore spesso commesso è quello di acquistare una strumentazione (equipaggiamento di campagna) che (magari oltretutto più onerosa da un punto di vista economico) non consente di lavorare in modo ottimale. Mai sottovalutare la saggezza e il buonsenso sintetizzati nella citazione di Chouinard (*The more you know, the less you need*).

HoliSurface[®]

Cavo da 4 canali per acquisizioni MAAM in aree remote (in cui non possiamo o vogliamo portarci ingombranti cavi da 9 o 12 canali) ma utile anche per piccole ESAC (da una parte utilizziamo un cavo da 9 o 12 canali e dall'altra questo "cavetto" da 4 canali in modo da ottenere facilmente uno stendimento bidimensionale).

Nel caso di acquisizioni congiunte MAAM + HVSR, ad un connettore del sismografo colleghiamo il **triassiale HOLI3C** e all'altro connettore il cavo da 4 (foto qui sopra).

Oltre ai *sistemi di acquisizione* per così dire "classici" (con cavo), ELIOSOFT distribuisce anche il *sistema SmartSolo* (di cui svolge anche il necessario *training*) che i nostri *software* sono in grado di gestire massimizzando tutto quanto è possibile ricavare in modo semplice (perfetta sinergia tra *hardware* e *software*).

Acquisizione HS con due sole terne *SmartSolo*. In un colpo solo si ottengono i dati della dispersione su tutte le componenti e due HVSR. Con la stessa strumentazione è poi possibile svolgere efficacemente analisi vibrazionali di vario tipo (ad esempio anche su ponti) e valutazioni della reale amplificazione dei microtremori (tecniche SSR/SSRn).

Il sistema integrato HS è un sistema flessibile studiato per dare un *senso* a tutte le operazioni di acquisizione e analisi e stabilire una **perfetta congruenza tra modalità di acquisizione e analisi del dato**, concretizzando il sogno di un sistema compatto e puntuale rispetto una vastissima serie di metodologie di applicazione.

La **configurazione base** consente di effettuare in modo ideale tutte le acquisizioni/analisi possibili con il software *HoliSurface*[®] lasciando però anche aperta la possibilità di lavorare con il multicanale attivo e passivo [MASW multi-componente, ESAC, ReMi, rifrazione/riflessione] rappresentato dalla **configurazione avanzata**, disponibile con un costo supplementare estremamente limitato (bastano di fatto 9 geofoni orizzontali e/o verticali a seconda delle tecniche di interesse).

Si tratta di un **sistema modulare** dove la funzione e la finalità di ogni elemento è stata attentamente studiata tenendo ben presente una vastissima serie di possibili metodi di indagine. Ad esempio, il <u>cavo composto *HoliSurface*</u> [una delle caratteristiche cruciali del sistema HS] consente in prima istanza di essere utilizzato come "prolunga" che collega il sismografo al geofono triassiale in modo tale da poter acquisire dati attivi per analisi *HoliSurface*[®] (in questo caso ai canali lungo il cavo non viene collegato nessun altro geofono). Lo stesso cavo può però essere utilizzato per altre tipologie di acquisizione multi-offset e quindi, in tal caso, si acquisiranno anche i canali intermedi (collegandovi ulteriori geofoni).

Tale cavo è quindi sia una prolunga nel caso di acquisizione HS, sia un "normale" cavo sismico. È possibile poi collegare al sismografo anche un secondo cavo con ulteriori 12 canali.

Non possiamo né desideriamo illustrare in una *brochure* tutti i dettagli che rendono del tutto unico il **sistema integrato HS**: vieni a trovarci e vedrai di persona *cosa* puoi fare e *come* farlo. La nostra proposta infatti non riguarda unicamente un aspetto (le acquisizioni o le analisi) ma l'intero processo di acquisizione e analisi secondo tutte le tecniche brevemente menzionate nella prima pagina di questa piccola brochure informativa.

Il sistema integrato HS è un sistema compatto pensato per lavorare in modo efficace ottimizzando spazi, tempi ed energie. Con il sistema HS è ad esempio infatti possibile lavorare agevolmente anche da soli. Quando ad esempio si devono acquisire dati per la tecnica *HoliSurface*[®] (sismica attiva) il sismografo e la sorgente si trovano nello stesso punto mentre il geofono triassiale è posto ad una certa distanza (*offset*). In questo modo dopo aver dato la prima "mazzata", l'utente può verificare direttamente sul monitor al proprio fianco la qualità del dato e procedere senza dovere, cosa necessaria per altri sistemi di acquisizione, andare su e giù tra sorgente e sistema di registrazione.

Il sistema integrato HS è l'unico grazie al quale, incluso nel prezzo, si fornisce un qualificato *training* su tutti gli aspetti di acquisizione e analisi.

Ti mostreremo come effettuare acquisizioni e analisi secondo <u>tutte</u> le metodologie possibili.

Prima di acquistare strumentazioni inadeguate, vieni a trovarci e ti mostreremo il nostro sistema di acquisizione integrato HS.

Shear source: the plate is set vertically (in a small hole dug in the ground). The horizontal force (hammer) is applied perpendicularly to the geophone array.

New book available:

Efficient Joint Analysis of Surface Waves and Introduction to Vibration Analysis: Beyond the Clichés

The book includes a series of datasets for your training

www.holisurface.com

- Gestione di dati *in continuo* registrati con nodi 3C senza cavo (SmartSolo eccetera)
- Compatibile con Windows 11
- Pannello per l'inversione di una o più curve HVSR (ricostruzione profili 2D)
- Un nuovo strumento per la gestione di set di dati ibridi (*hybrid* = file sismico con dati sia passivi che attivi) registrati con <u>due geofoni a 3 componenti</u>: i dati attivi vengono estratti e viene automaticamente effettuato lo *stack*.
- **Processing automatico (batch) di dati HVSR multipli**: hai una numerosa serie di dati HVSR che vuoi processare in modalità batch (automatica)? Ora puoi farlo [vedi appendice "elaborazione batch di dati HVSR multipli"]
- Nuove funzionalità nel tool per la definizione della Risposta Sismica Locale
- Ottimizzazione del metodo *Standard Spectral Ratio* (SSR) [studi di zonazione sismica] e della *Spectral Difference.*
- Ottimizzazione del tool per ottenere profili 2D a partire da diversi profili Vs in linea
- Miglioramenti nel modulo di conversione da formato *seg* a *SAF* (aggiunta di un fattore di moltiplicazione, dell'unità di misura, di note e dati GPS)
- DTM tool: utilizzo di dati DTM (Digital Terrain Model) per i propri reports
- Analisi vibrazionali su edifici/strutture/ponti secondo procedure avanzate (acquisizioni <u>sincronizzate</u> [dinamiche] sull'asse verticale o sul piano orizzontale) e anche secondo il nostro metodo GHM (Gaussian-filtered Horizontal Motion -Dal Moro et al. 2018 e libro della Flaccovio del 2019).
- Analisi MAAM: <u>svariate e importanti migliorie</u>. Mentre tutti gli altri strumenti di HS sfruttano i dati raccolti con unicamente un geofono triassiale, per questo tipo di acquisizioni è necessario l'utilizzo di un sismografo multicanale (di ottima qualità) e 4 geofoni verticali. Nella *release* 2020 è stata anche aggiunta l'analisi ESAC (dei dati raccolti per l'analisi MAAM – quindi geometrie triangolari o pentagonali).

Pannello HVSR:

- 1) *tools* per la **gestione di componenti industriali con rimozione "automatica" di eventuali segnali spuri**
- 2) lettura direttamente di *files* in formato SEG2 senza la necessità di trasformarli prima in SAF (molto utile per chi acquisisce i microtremori con una terna passiva collegata al sismografo)
- 3) aggiunti strumenti per la rimozione automatica di transienti (dominio tempo) e curve HVSR *outliers* (dominio delle frequenze)
- 4) calcolo della *coerenza* tra le varie coppie di sensori (strumento estremamente utile per verificare la presenza di picchi/segnali di natura industriale)
- 5) possibilità di scelta tra varie possibile scale di frequenza e ampiezza (log-lineare).
- 6) equalizzazione (recupero delle ampiezze reali) in caso di utilizzo di uno dei nostri geofoni triassiali HOLI3C
- 7) Modellazione dell'HVSR coi nostri codici proprietari che consentono di considerare l'attenuazione e le onde di Love nel modo più flessibile e trasparente possibile (fattore α di Arai & Tokimatsu, 2004)

Table of Contents

A brief foreword

Chapter 1 - Surface Waves: propagation, dispersion and attenuation

Chapter 2 - Data Acquisition (active and passive methodologies)

Chapter 3 - Understanding Surface Wave Phenomenology

Chapter 4 - Horizontal-to-Vertical Spectral Ratio

Chapter 5 - Inversion and Joint Inversion: concepts and practice

Chapter 6 - Full Velocity Spectrum inversion and other unconventional approaches

Chapter 7 - Some final notes

References

Appendix – Case Studies

A brief introduction

Case study #1 - A simple ZVF analysis for geotechnical purposes

Case study #2 – A simple but interesting dataset

Case study #3 – Inverse dispersion by the book

Case study #4 – When the joint analysis of Love & Rayleigh waves is necessary

Case study #5 – Joint analysis of Rayleigh-wave dispersion and P-wave refraction

Case study #6 – A comprehensive survey in the Swiss Alps

Case study #7 – Joint analysis of Rayleigh and Love waves via FVS analysis

Case study #8 – A typical civil engineering job

Case study #9 – A landslide area

Case study #10 – Back to the Swiss Alps

Case study #11 – Modes and components (a very tricky site)

Case study #12 – Analyzing phase and group velocities and HVSR

Case study #13 – Some focus on HVSR computation

Case study #14 - Surface waves on the Moon

How to get it: store.elsevier.com

www.holisurface.com

Avvertenza

La scienza e la tecnica non ammettono scorciatoie ed evolvono molto rapidamente.

Comprereste mai un *computer* o uno *smartphone* concepito e costruito più di 5 anni fa? Perché allora affidarsi a metodologie e approcci superati da più recenti metodi?

Per utilizzare correttamente le potenzialità di *HoliSurface®*, è necessario tenere ben presenti alcuni elementi senza illudersi che al ridottissimo sforzo di campagna nell'acquisizione dei dati (è sufficiente utilizzare un unico geofono triassiale calibrato) corrisponda un parimenti ridottissimo sforzo "intellettuale" in sede di analisi del dato.

Lavorare con le *velocità di gruppo* (a differenza di tutte le altre metodologie, la tecnica *HoliSurface®* si basa sulle velocità *di gruppo*) offre rilevanti opportunità ma richiede padronanza di una serie non banale di aspetti.

Chi desideri impadronirsi delle tecniche non può fare a meno di seguire *workshop* dedicati e approfonditi, ricordando che una giornata di *training* non può rendere un neofita della geofisica un esperto di onde di superficie.

Per questi motivi il *software* è proposto solamente in relazione e in occasione di *workshops* di profilo piuttosto "avanzato" (i concetti presentati nel libro "*Onde di Superficie in Geofisica Applicata*" vengono dati per assodati e ben sedimentati).

Per coloro che non possono o desiderino dedicarsi in modo consapevole e rigoroso a queste nuove tematiche ma desiderino comunque ottenere dei profili V_S con un ridottissimo sforzo di campagna ed un ridotto costo della strumentazione è invece consigliabile un secondo approccio: sfruttare il vantaggio di avere a che fare con operazioni di campagna semplicissime (per il metodo *HoliSurface[®]* si utilizza solamente 1 geofono triassiale) e avvalersi del nostro servizio di elaborazione dati.

Testi da considerare in relazione ai metodi implementati in HoliSurface®

Libri della *Flaccovio* (quello del 2012, poi quello del 2019 e infine del 2023) e/o della *Elsevier* sulle onde di superficie (per una mera infarinatura generale) e della Springer in uscita ad inizio 2020 (*Efficient Joint Analysis of Surface Waves and Introduction to Vibration Analysis: Beyond the Clichés*)

Dal Moro G., Coviello V., Del Carlo G., 2014. Shear-Wave Velocity Reconstruction via Unconventional Joint Analysis of Seismic Data: Two Case Studies in the light of Some Theoretical Aspects, *IAEG (International Association for Engineering Geology and the Environment)* XII CONGRESS - Turin, September 15-19, 2014: <u>http://download.winmasw.com/documents/Surface Waves Joint Inversion Dal Moro Coviello De</u> <u>I Carlo DISSEMINATION.pdf</u> [introduzione al metodo FVS]

Dal Moro G., 2016. Four Geophones for seven objective functions: active and passive seismics for tricky areas. Invited presentation and Extended Abstract for the *Urban Geophysics* workshop at the 22nd *EAGE Near Surface Geoscience* conference (Barcelona - Spain, 4-8 September 2016) [introduzione al mondo HS]

Dal Moro G., Ponta R., Mauro R., 2015. Unconventional Optimized Surface Wave Acquisition and Analysis: a Geotechnical Application in a Perilagoon Area. *J. Appl. Geophysics*, 114, 158-167 [il metodo HS e MAAM spiegati e utilizzati con un caso studio]

Dal Moro G., Keller L., Poggi V., 2015. A Comprehensive Seismic Characterization via Multi-Component Analysis of Active and Passive Data. *First Break*, 33, 45-53 [un importante caso studio comparato]

Dal Moro G., Keller L., Moustafa S.R., Al-Arifi N., 2016. Shear-wave velocity profiling according to three alternative approaches: a comparative case study. *Journal of Applied Geophysics*, 134, 112–124 [caso studio comparato: metodo HS classico, MAAM e MASW multi-canale con elaborazione FVS]

Dal Moro G., 2015. Joint Inversion of Rayleigh-Wave Dispersion and HVSR of Lunar Seismic Data from the Apollo 14 and 16 sites. *ICARUS*, 254, 338-349 [un caso studio *extraterrestre*]

Dal Moro G., Al-Arifi N., Moustafa S.R., 2017. Analysis of Rayleigh-Wave Particle Motion from Active Seismics. *Bulletin of the Seismological Society of America*, 107, 51-62 [la curva RPM, il suo significato e possibile utilizzo]

Dal Moro G., Al-Arifi N., Moustafa S.R., 2017. Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-wave Particle Motion and Vertical- and Radial-Component Velocity Spectra. *Pure and Applied Geophysics*, on-line version available from this link [analisi congiunta degli spettri di velocità delle componenti Z e R congiuntamente ai dati RPM sia per dati multi-offset (MASW) che single-offset (HS)]

Dal Moro G. and Puzzilli L.M., 2017. Single- and multi-component inversion of Rayleigh waves acquired by a single 3-component geophone: an illustrative case study. *Acta Geodyn. Geomater.*, vol. 14, No. 4(188), 431-444. On-line version available <u>here</u> [caso studio ragionato HS]

Dal Moro G., Al-Arifi N., Moustafa S.R., 2019. On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies, *Soil Dynamics and Earthquake Engineering* 125 (2019) 105742, https://doi.org/10.1016/j.soildyn.2019.105742 [l'articolo di fondamento del metodo HS]

Dal Moro G., Weber T., Keller L., 2018. <u>Gaussian-filtered Horizontal Motion (GHM) plots of</u> <u>non-synchronous ambient microtremors for the identification of flexural and torsional modes</u> <u>of a building, *Soil Dynamics and Earthquake Engineering*, 112, 243–255 [metodo GHM analizzando le vibrazioni di 2 edifici tra loro molto differenti]</u>

Un software (qualsiasi software) è uno strumento

L'accuratezza dei risultati dipende sempre ed unicamente dalla preparazione teorica e dall'esperienza dell'utente.

Se sai cosa stai facendo allora puoi farlo con la certezza di ottenere risultati corretti.

I dati non vanno *interpretati* (come spesso si sente purtroppo dire) ma *compresi* nella loro interezza e *analizzati*. I tarocchi si *interpretano*, i dati si *analizzano*.

Ciò è possibile solo se si possiede un'adeguata preparazione (anche teorica).

Nella sismica (tutta) non esiste il concetto di *prova* così come in geotecnica.

Il termine *prova* rimanda a una serie di procedure completamente standardizzate che fanno sì che i numeri che si ottengono siano tra loro confrontabili in modo "semplice". Le *prove* di laboratorio in geotecnica sono/possono essere fatte da "semplici" tecnici seguendo delle procedure/protocolli standardizzati e uguali per tutti.

In geofisica non è possibile nulla di tutto questo perché:

1) nulla è standardizzabile;

2) i dati devono essere "letti" da un professionista altamente qualificato su quella specifica tecnica.

Come non si può parlare di "*prove di sismica a riflessione*" (mai sentito e sarebbe una bestemmia), non si può parlare di prove MASW o altro (qui, purtroppo, le bestemmie abbondano quotidianamente).

Una *prova* si riferisce ad un dato oggettivo, mentre l'analisi di un qualsiasi dato sismico è invece (purtroppo lo sappiamo bene) un qualcosa in cui la persona mette dentro tutto il suo *know-how-and-what*.

winMASW[®] Academy e HoliSurface[®]

Allorché si desideri utilizzare in modo completo le potenzialità di *winMASW[®] Academy* e/o di *HoliSurface[®]* è fondamentale che l'intero <u>sistema</u> sia coerente.

L'equipaggiamento di campagna (sismografo, geofoni, terna per analisi HVSR e *HoliSurface®* ecc.), il software di acquisizione ed analisi, i computer utilizzati in sede di acquisizione ed analisi del dato rappresentano nel loro insieme un <u>sistema</u> che deve essere assolutamente coerente.

Le *performances* del *sistema* dipendono infatti dall'anello debole (di questo *sistema* fa parte anche il bagaglio di conoscenze teoriche e pratiche dell'utente).

È quindi fondamentale studiare il *sistema* nel dettaglio sulla base delle proprie esigenze professionali evitando, a causa di scelte inappropriate, di trasformare un buon *investimento* in un inutile *costo*.

A questo proposito, ricordiamo i nostri servizi di elaborazione dati e consulenza suggeriti in particolare a chi, affacciandosi al mondo della geofisica, desideri farlo nel modo più coerente possibile acquisendo gli strumenti *hardware* e *software* più adatti a lavorare nel modo migliore dal punto di vista del rapporto qualità/costi.

Per ulteriori documenti visita il nostro sito e partecipa ai nostri incontri.

helps

Molti "help" sono visualizzabili semplicemente portando il cursore sopra il parametro/pulsante in questione: una scritta su sfondo giallo apparirà con alcune informazioni di base. Si raccomanda di dare un'occhiata anche ai *video tutorials*

Alcune delle figure del manuale possono riferirsi a vecchie *release* del *software*. Tutti gli aggiornamenti conservano le caratteristiche delle precedenti versioni e aggiungono nuove funzionalità e/o risolvono passati limiti.

REGISTRAZIONE

Per perfezionare l'acquisto è necessario registrarsi inviando una e-mail (holisurface@winmasw.com) ed indicando prodotto, UID (*User Id*) e SN (*Serial Number*) riportati sulla USB *dongle*, data e nome del distributore presso il quale è stato effettuato l'acquisto.

La mancata registrazione entro due settimane dall'acquisto comporta la perdita del diritto all'assistenza sul software.

ASSISTENZA e video tutorials

L'unico modo serio di operare è quello di frequentare i nostri *workshops* ove si gettano le basi teoriche necessarie per procedere con buone acquisizioni e analisi.

Gli unici soggetti abilitati a fornire informazioni ed assistenza su *HoliSurface®* e *winMASW®* sono riconducibili al sito **www.winMAW.com**.

Oltre al presente manuale, dal sito **www.holisurface.com** è possibile scaricare *casi studio* e *video tutorials* mirati al corretto uso delle diverse possibili procedure, casi studio, ecc.

Nuovi *video tutorials* sono di tanto in tanto resi pubblici al seguente canale *youtube* You Tube (che ti invitiamo a sottoscrivere insieme alla nostra pagina *Eacebook*, ove

(che ti invitiamo a sottoscrivere insieme alla nostra pagina *Facebook*, ove vengono presentati casi studio e raccomandazioni):

https://www.youtube.com/user/winMASW/videos

Tecnica <i>HoliSurface®</i> Insigmo di proceduro altamonto automatizzato o "olisticho" con analisi	
congiunta di fino a 7 <i>osservabili</i> (a descrivere per intero la propagazione delle	\checkmark
onde di superficie).	
Analisi MAAM (Miniature Array Analysis of Microtremors)	
HVSR (Horizontal-to-Vertical Spectral Ratio): analisi e modellazione avanzata	
Decimazione, filtraggio e pulizia dei dati	
Determinazione Vs30 e Vs equivalente (rispetto a qualsiasi profondità indicata)	
Analisi spettrale (spettri di ampiezza e fase) e spettrogrammi (variazione	
contenuto in frequenza nel tempo)	N
Modellazione 1D <i>rifrazione</i> onde P ed SH (anche con canali a bassa velocità)	
Strumento calcolo moduli elastici	\checkmark
Inversione congiunta HV + spettri velocità di gruppo	
Strumento per la creazione di sezioni 2D	\checkmark
Analisi vibrazionali (normativa DIN 4150, UNI9614 e ISO2631)	
Tool per lo Standard Spectral Ratio [SSR] (studi relativi agli effetti di sito)	
Analisi vibrazionali su edifici/strutture (tecnica GHM e GVM) [2 o 4 punti di misura]	
Tool per computo della Risposta Sismica Locale	
<i>Tool</i> per la gestione di foto georeferenziate	

Il sistema *HoliSurface*® in breve

Il software *HoliSurface*[®] nasce come *software* (e poi come sistema integrato di acquisizione) utile a sfruttare una moltitudine di metodologie sismiche e vibrazionali che possono essere sviluppate a partire da una limitatissima (<u>ma precisa e studiata in tutti i dettagli</u>) strumentazione di campagna e con un minimo sforzo di campagna.

Il software *HoliSurface*[®] consente di analizzare dati sismici per ricavare un profilo verticale della V_S (velocità delle onde di taglio) in modo molto robusto secondo diverse metodologie/approcci attivi e passivi. Questo viene svolto sia attraverso dati di natura attiva (metodo *HoliSurface*[®]) che passiva (MAAM e HVSR).

Inoltre è possibile analizzare dati per analisi vibrazionali dinamiche su edifici, normativa UNI/DIN e definizione dello *Standard Spectral Ratio* (SSR) [studi di amplificazione di sito].

Attenzione a non confondere il <u>metodo *HoliSurface*[®]</u> (brevettato) e il <u>software</u> <u>*HoliSurface*[®]: nel software *HoliSurface*[®] sono implementati svariati moduli di analisi accomunati dal fatto che l'acquisizione dei dati può essere svolta con una strumentazione limitata (essenzialmente è sufficiente un sistema di acquisizione a 4 canali, un triassiale e 4 geofoni verticali di alta qualità).</u>

HoliSurface® - Holistic Tool for the Analysis of Surface Wave	Propagation and Vibration Data	- 🗆 X
		×
HS Holistic Tool for the	e Analysis of Surface Wave Propaga	ation and Vibration Data
parallel computing		documents & videos
Parallel Computing On [60 workers]		
facebook number of threads: 60	release 2023-beta current relea	ase & benchmarks - Internet sites - 🗸
Before starting		
1. set the working folder open working folder		
I:\ELIOSOFT\Dati\Summaga\MAAM10m HVSR ALEVEARI Ju	uly2021\10 meters radius afternoon	
 Control operating of the set of data and the statistic state. 	in a second s	
2. mixed (soft sediments + gravels) [B class]		
HoliSurface, MAAM & HVSR	passive seismics	vibrations
single O Inv: disp or HVSR	HVSR	DIN4150 UNI9614 ISO2631
disp + HVSR 2-component inv. 2-obs inversion (Disp + HV)	multiple HVSR	buildings/bridges/struct
Holi Surface Holi-Inversion (3 obs)	SSR, SSRn & SD	utilities
4-obs Holistic Inversion	MAAM/SPAC	Site Response
		SW.COM

Alcuni punti fondamentali

1. Nel *software HoliSurface*[®] sono implementate diverse metodologie accomunate dal fatto che le relative acquisizioni richiedono una limitata ma puntuale strumentazione.

2. Il computer da utilizzare per svolgere analisi in modo sciolto e rapido dovrebbe avere un'ottima potenza di calcolo (vedi sezione "Requisiti di Sistema").

3. La nostra offerta include non solo il *software HoliSurface*[®], ma anche il <u>sistema di</u> <u>acquisizione ottimale</u> e suggerimenti per il PC da utilizzare per le analisi.

È possibile utilizzare altri sistemi di acquisizione? Certamente sì, ma quello da noi proposto è in grado di ottimizzare <u>tutto</u>.

4. La formazione (su teoria, hardware e software) è fondamentale: senza la giornata formativa sull'intero *sistema HoliSurface*[®] è assolutamente impossibile sfruttare sino in fondo (e nel modo corretto) tutto quanto il sistema da noi ideato è in grado di fare.

Software *HoliSurface*®:

diverse metodologie per svariate condizioni e diversi obiettivi

HoliSurface® è un metodo innovativo (brevettato) di analizzare la propagazione delle onde di superficie allo scopo di determinare il profilo verticale della Vs. In pratica rappresenta il miglioramento della tecnica più classica della sismologia, utilizzata da oltre una cinquantina d'anni ad esempio per determinare gli spessori crostali (MFA - *Multiple Filter Analysis*). Si noti che l'acronimo FTAN (*Frequency Time ANalsysis*) è a volte utilizzato da altri ricercatori per indicare di fatto la stessa tecnica.

Il punto cruciale caratterizzante l'approccio *HoliSurface®* è quello di analizzare la propagazione delle onde sulla base di dati acquisiti con **un unico geofono triassiale** (posto ad una certa distanza dalla sorgente) ma, nonostante questo, secondo un approccio *multi-componente* e *multi-osservabile* in grado di definire puntualmente il profilo V_S.

Non si deve confondere la tecnica *HoliSurface*[®] con il software *HoliSurface*[®]. In quest'ultimo sono infatti inseriti molti moduli di analisi secondo svariate metodologie, tutte accomunate dal fatto di richiedere una strumentazione limitata (fondamentalmente un geofono triassiale e 4 geofoni verticali) e un limitato sforzo di campagna.

Per una lista completa dei moduli attualmente implementati nel software *HoliSurface*[®], vedi la **Tabella riassuntiva dei principali strumenti** riportata nelle pagine precedenti.

Il <u>metodo</u> *HoliSurface®* è particolarmente efficace per la determinazione del *bedrock* in zone in cui vi è un forte contrasto tra i sedimenti di copertura e il materiale (*bedrock*) sottostante (vedi ad esempio il *caso studio#1* disponibile sul sito e sul DVD di *HoliSurface*). In questo caso è bene ed utile utilizzare le tre componenti base: ZVF, RVF e RPM (con in caso l'HVSR se la profondità del *bedrock* è superiore a 20 m).

Qui di seguito una piccola tabella di indicazioni riguardo il metodo più appropriato per l'analisi della propagazione delle onde di superficie al fine di determinare il profilo V_S.

contesto	metodologia più indicata
Svariate decine di metri di sedimenti fini (limo, argille, sabbie)	HS (VF e HF) + HVSR
Piccoli bacini (sedimenti soffici o di versante) su roccia sana	HS (VF + HF) o
a poche decine di metri	MAAM + HVSR
Siti industriali molto rumorosi	MAAM + HS
Sedimenti veloci / roccia già in superficie (o quasi)	HS (HF)

Vs equivalente (VsE) e NTC2018

Nelle versioni della primavera 2018 viene anche introdotta la V_S equivalente in accordo alle NTC 2018 e definita dalla seguente relazione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

in cui la profondità H è quella a cui la velocità V_S è pari o superiore a 800 m/s (bedrock sismico).

Si tratta in pratica di una *variazione sul tema* rispetto al parametro Vs30 (in quel caso il valore di H era ed è fissato a 30 m).

Di fatto se il bedrock sismico è più profondo di 30 m (dal piano di fondazione) la Vs equivalente (che nei nostri software è sinteticamente indicata come **VsE**) è uguale alla Vs30.

Le "categorie di sottosuolo" sono:

A - Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.

B - Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s

C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s

D - Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s

E - Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

Decreto 17 gennaio 2018 in aggiornamento alle *Norme Tecniche per le Costruzioni* e pubblicato sul Supplemento ordinario n. 8 alla Gazzetta Ufficiale del 20/02/2018.

Sismica attiva e passiva: breve ma importante sottolineatura

Il software *HoliSurface®* consente di analizzare dati sismici (attivi e passivi) per ricavare il profilo verticale della V_S (velocità delle onde di taglio) secondo diversi approcci.

È importante comprendere e ricordare che esistono moltissimi modi diversi di analizzare i dati sismici (attivi e passivi) e così come parlare "sismica passiva" non significa **nulla** (quale "sismica passiva"? ESAC, SPAC, ReMi, HVSR, MAAM, 2D-SuPPSALA/PS-MuCAA, interferometria eccetera), anche parlare di "MASW" non significa più **nulla** (che tipo di *Analisi*? Su quante e quali *componenti*? Considerando quale *velocità*? [fase o gruppo?]). Ricordando che i limiti del nostro linguaggio sono anche i limiti del nostro mondo, quando si intende indicare qualcosa, è bene e necessario essere puntuali e precisi (si vedano ad esempio le svariate modalità con cui grazie a *HoliSurface*® e *winMASW* ® possiamo analizzare la dispersione delle onde di superficie secondo tecniche attive e passive).

Requisiti di sistema

HoliSurface[®] gira unicamente su sistemi operativi a 64bit (Windows 11 incluso e raccomandato).

È importante sottolineare l'importanza di aggiornare di frequente il sistema operativo ("*windows update*") e tenere pulito e ordinato il computer [evitando ad esempio di installare e disinstallare troppi programmi "minori" e inutili].

Se vogliamo sfruttare le potenzialità del calcolo parallelo (*parallel computing*) e delle procedure di inversione automatica multi-obiettivo di taluni moduli particolarmente avanzati di *HoliSurface*[®] e/o *winMASW*[®] *Academy* (analisi congiunte FVS, RPM, 2D SuPPSALA/PS-MuCAA, HVSR eccetera), è necessario l'utilizzo di computer dalle ottime caratteristiche (per le analisi più "tradizionali" di *winMASW*[®] o *HS*[®] non sono richiesti particolari "sforzi computazionali").

Vi sono due vie: pensare (pianificare) in grande o limitarsi a ottime (ma limitate/chiuse) soluzioni. Per la seconda via (che molti, comprensibilmente, decideranno di scegliere), si segnalano ad esempio i computer (disponibili già assemblati) che montano processori *Intel i9-13980HX* (e successivi) da 24 *cores* fisici (32 *threads*) o gli AMD Ryzen 9 7945HX (16 *cores*, 32 *threads*). Si avrà un'ottima macchina che però non potrà essere ulteriormente "upgradata" (la soluzione è comunque certamente valida per la quasi totalità dei professionisti).

Un'altra possibile soluzione consigliabile a chi analizza quotidianamente un **massiccio** numero di dati (magari per analisi 2D) è invece la seguente (pensare/pianificare in grande): una *workstation* con una scheda madre che consenta di montare **due** CPU. All'inizio è possibile montarne anche solo una (oramai sconsigliatissime CPU con meno di 16 *cores* fisici) tenendosi però aperta la porta per una possibile seconda CPU da far installare nel futuro (che andrà a raddoppiare la potenza di calcolo). In questo secondo caso ci si deve rivolgere ad una ditta in grado di assemblare *workstation* (grazie a internet, non è difficile trovarne uno che faccia al caso nostro).

RAM minima suggerita per lavorare con tranquillità: 8/16 GB

Risoluzione monitor: 1920x1080 e oltre [raccomandati monitor in formato 21:9]

Sottolineiamo ancora come l'equipaggiamento di campagna (sismografo, geofoni per acquisizioni MAAM, terna per analisi HVSR, *HoliSurface*[®] e analisi vibrazionali), il software di acquisizione ed analisi, i computer utilizzati in sede di acquisizione ed analisi del dato rappresentano del loro insieme un <u>sistema</u> che deve essere assolutamente coerente. Il sistema *HoliSurface*[®] consente procedure di campagna estremamente snelle e veloci e un limitatissimo costo della strumentazione di campagna (un solo geofono triassiale) ma il carico computazionale può risultare pesante (in future versioni saranno sicuramente velocizzate ma resterà importante un PC dalle ottime prestazioni).
Grazie al pulsante "**current releases & benchmarks**" presente nel pannello principale del *software*, è possibile avere un'idea delle *performance* del proprio processore (preso nella sua singolarità – le capacità cioè di un singolo *core*) rispetto una serie di unità di riferimento. Qui di seguito un esempio per un processore (unità CPU) che monta una serie di *cores* non particolarmente potenti (anzi, piuttosto lenti), ma che acquista valore nel momento in cui consideriamo che la CPU in questione ha un elevato numero di *cores* (in questo caso 36).

MATLAB Benchmark (times in seconds) — 🗆 🗙						
Computer Type	LU	FFT	ODE	Sparse	2-D	3-D
Windows 10, AMD Ryzen Threadripper(TM) 3970x @ 3.50 GHz	0.2008	0.1881	0.3469	0.4396	0.2029	0.1117
Debian 10(R), AMD Ryzen Threadripper 2950x @ 3.50 GHz	0.3122	0.2377	0.3219	0.5047	0.5941	0.1631
iMac, macOS 11.2.3, Intel Core i9 @3.6 GHz	0.3278	0.2648	0.2674	0.2763	0.6898	0.3946
Windows 10, Intel Xeon(R) W-2133 @ 3.60 GHz	0.4154	0.2991	0.4348	0.4574	0.3167	0.2184
Windows 10, Intel Xeon CPU E5-1650 v3 @ 3.50 GHz	0.4614	0.3030	0.4455	0.4433	0.3559	0.2623
Windows 10, AMD Ryzen(TM) 7 1700 @ 3.00 GHz	0.7507	0.5163	0.4884	0.5441	0.3397	0.1849
Windows 10, Intel Core i7-10610 @ 1.8 GHz	0.9218	0.4394	0.3666	0.3844	0.7386	0.6251
Surface Pro 3, Windows(R) 10, Intel(R) Core(TM) i7-5600U @ 2.6 GHz	1.7475	0.9090	0.6178	0.5711	0.5713	0.3623
MacBook Pro, macOS 10.15.2, Intel Core i5 @ 2.6 GHz	1.6237	0.9786	0.5446	0.6173	2.5214	2.0229
This machine	0.4473	0.2700	0.8640	0.8753	2.4623	11.8298
		ing dataile. Defension				

Place the cursor near a computer name for system and version details. Before using this data to compare different versions of MATLAB, or to download an updated timing data file see the help for the bench function by typing "help bench" at the MATLAB prompt.

2. Installazione

Per lanciare la procedura di installazione è sufficiente cliccare sul file di installazione.

Dettagli aggiornati sulla procedura di installazione sono presenti nel file LEGGIMI.PDF (o README.PDF) nel DVD *HoliSurface*[®].

Attenzione

Sotto taluni sistemi operativi la gestione dei privilegi di installazione e scrittura in talune cartelle è piuttosto restrittiva.

Si è a volte notato (specie appunto con il sistema *Windows Vista*) che installando il programma fuori dalle cartelle "di sistema" (*C:\Program Files, C:\Programmi* e *C:\Windows*) all'interno di cartelle create *ad hoc* (come ad esempio *C:\HoliSurface* o *C:\geofisica\ HoliSurface*) sussistono meno vincoli per gli utenti e non si verificano possibili problemi legati appunto a privilegi mancanti.

Doveste verificare problemi al lancio di *HoliSurface* (ne abbiamo verificati solo sotto *Windows Vista*) controllate quindi come prima cosa le impostazioni dei privilegi (le "proprietà" impostabili tramite tasto destro del mouse sull'icona di *HoliSurface*[®] sul *desktop*).

É importante che l'utente che sta utilizzando *HoliSurface*[®] abbia il privilegio di scrittura nella cartella "*HoliSurface*/output" (se avete installato il programma come *Amministratore* ma lo lanciate con un diverso utente questo potrebbe non verificarsi). Sotto *Windows Vista* si suggerisce quindi di installare il programma in una cartella esterna quale ad esempio "*C:\ HoliSurface*".

Se installate *HoliSurface*[®] in una cartella dove vi erano versioni precedenti del *software* tutti gli eventuali *file* di dati ed analisi saranno cancellati. Utilizzate quindi una cartella diversa e/o effettuate prima un *backup* dei vostri dati.

Il software si appoggia a librerie *Matlab*, che vengono contestualmente installate (come lingua di installazione si scelga l'inglese):

Choose	Setup Language			×
E	Select the langu	age for this	installation from	the choices below.
	Inglese (Stati Uniti))		-
	0	ιк	Cancel	

Nel caso sul vostro computer siano già installate le librerie grafiche *Matlab* nella seguente finestra di dialogo va scelta l'opzione "*Modify*"

Durante l'installazione delle librerie è possibile che compaia un messaggio come quello riportato qui sotto:

Ignoratelo senza patemi, cliccando su "OK".

F	ire	ewalls e	e ca	alcolo parallelo)		
Se il vostro firewall è particolarmente restrittivo, è possibile (una volta lanciato <i>HoliSurfac</i> che otteniate il seguente messaggio:							
an 1	Avviso	di protezione Window	IS		×		
•	•	Windows Firewall ha bl	loccato al	lcune funzionalità del programma			
wir sbi	indows I locca il p rivanti (Firewall non consente al p programma, lo sblocco avr dallo sblocco di un progran	rogramma ('à effetto in nmai	di accettare connessioni di rete in entrata. Se si n tutte le reti pubblica a cui ci si connette. <u>Rischi</u>			
		Nome:	mpiexec.	.exe			
-		Autore:	Sconoscie	iuto			
	1	Percorso:	C:\progra	am files\matlab\r2011b\bin\win32\mpiexec.exe			
)	Percorso di rete:	Rete pub	bblica			
			Che cosa	a sono i percorsi di rete			
				Continua a bloccare 🔗 Sblocca	I		

Questo avviene perché il computer, per sfruttare le procedure di calcolo parallelo, deve essere messo nelle condizioni di fare alcune operazioni che richiedono l'esplicito permesso dell'utente/amministratore. "Sbloccate" l'applicazione senza timori

Sistemi anti-virus

Con taluni *anti-virus* incapaci di gestire i sistemi di protezioni basati su un "guscio" (sistemi *envelope* quali quello della FEITIAN) è possibile che, in riferimento all'applicativo *HS.exe*, venga segnalato un *trojan*. Se dovesse accadere, ignorate la segnalazione indicando all'*anti-virus* di ignorare la cartella di installazione di *HoliSurface*. Sistemi anti-virus più efficaci (suggeriamo l'ottimo AVG) non hanno questo tipo di problemi segnalati ad esempio con AVAST, AVIRA e Panda.

Una volta completata l'installazione sul *Desktop* apparirà l'icona di *HoliSurface* (il consueto doppio click lancerà l'applicazione):

Similmente, il gruppo *HoliSurface* viene creato tra i programmi cui si accede dal menu di *Windows Start* \rightarrow *tutti i programmi* (oltre a lanciare *HoliSurface*, dal gruppo è possibile consultare il sito internet di *HoliSurface*, il manuale, ecc.).

3. Licenza d'uso e USB *dongle*

Il software *HoliSurface*[®] funziona con chiave hardware (USB *dongle*) e la licenza d'uso è concessa per un periodo di tempo illimitato.

In caso di danneggiamento della USB *dongle* è possibile ottenerne una nuova previa restituzione della <u>chiavetta danneggiata</u> e pagamento dei costi della nuova USB *dongle* e delle spese di spedizione. In caso di furto o smarrimento è necessario inviare copia della denuncia effettuata alle autorità competenti.

In caso si desideri una USB *dongle* aggiuntiva questa deve essere intestata al medesimo licenziatario (ragione sociale) ed è prevista solo per studi associati/società (es. snc, sas, srl, ecc.) e non per ditte individuali/liberi professionisti. In questo caso, le USB *dongles* costituiscono un'unica licenza e non possono essere cedute a terzi separatamente.

Gli aggiornamenti software rilasciati successivamente alla data di acquisto prevedono il pagamento di una quota determinata sulla tipologia e quantità delle novità implementate nonché sulla *release* posseduta dall'utente.

ELIOSOFT non si assume la responsabilità di risultati derivanti da un uso inappropriato del software dovuto a negligenza o mancanza di conoscenza delle metodologie.

Non si effettuano elaborazioni di dati a titolo gratuito (gli utenti registrati ricevono una mailing list con esempi di elaborazioni, casi studio, eccetera).

Si ricorda che è attivo il **servizio di elaborazione dati**, per acquistare pacchetti di elaborazioni o richiedere maggiori informazioni scrivi a: info@winmasw.com.

Licenza Educational

Per le università ed istituzioni scientifiche che utilizzano il software per finalità esclusivamente didattiche e di ricerca (e non eseguono lavori conto terzi) è prevista la *Licenza Educational*.

info@winmasw.com

4. La tecnica *HoliSurface®*: acquisizione dati

Il termine *HoliSurface*[®] proviene dall'unione dai termini "*Holistic*" e "*Surface*". Questo esprime il fatto che lo scopo del metodo/software è quello di analizzare la propagazione delle onde di superficie in modo completo, cioè olistico.

Acquisire un dato per analisi *HoliSurface*[®] non è molto diverso rispetto alle tradizionali acquisizioni di sismica <u>attiva</u>, per ad esempio analisi MASW o a rifrazione (lo zero dei tempi è fissato dal trigger).

La differenza sostanziale è che in questo caso si utilizza un unico geofono a tre componenti (3C–spesso indicato anche come 3D in quanto si tratta di un geofono con 3 sensori orientati in tre direzioni spaziali ortogonali) la cui orientazione è però fondamentale. Il punto determinante è che la seconda traccia del file di output deve rappresentare la componente *radiale* (cioè la direzione che rappresenta l'asse che unisce *sorgente* e *geofono*).

Quello che possiamo definire "metodo di acquisizione (e analisi) *HoliSurface®*" è di fatto null'altro che una sismica attiva e, come tale, la qualità è piena responsabilità dell'operatore che si trova in campagna a raccogliere i dati.

In ambienti particolarmente rumorosi (ad esempio zone urbane o industriali) l'unico modo per ottenere delle buone tracce è (in genere) aumentare lo *stack*.

Come è possibile che si possa definire il profilo V_S utilizzando i dati (attivi) ottenuti da un <u>singolo geofono</u> (a 3 componenti)?

Semplicemente perché la metodologia HS è il miglioramento dell'approccio sismologico più classico: l'analisi delle velocità di gruppo. Per definire le velocità di gruppo è sufficiente un geofono, mentre per definire le velocità di fase sono necessarie diverse tracce.

La maggior parte degli studi sismologici crostali si basa sulle *velocità di gruppo* ottenute considerando i dati di una sola stazione di registrazione. La letteratura è infinita e qualsiasi corso introduttivo alla sismologia dovrebbe fornire gli elementi di base necessari per comprendere i fatti fondamentali. Basta cercare su Google "seismology group velocity shear-wave velocity" per trovare centinaia di studi al riguardo (a partire dagli anni '60).

La tecnica HoliSurface rappresenta il miglioramento del classico metodo MFA/FTAN (*Multiple Filter Analysis / Frequency Time ANalysis*). Vedi ad esempio il seguente articolo: *On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies* (Dal Moro et al, 2019), Soil Dynamics and Earthquake Engineering 125 (2019) 105742, https://doi.org/10.1016/j.soildyn.2019.105742

Se in campagna notate tracce rumorose come nell'esempio sopra riportato (un'acquisizione eseguita con stack 5) è chiaro che il rumore di fondo è talmente pronunciato che vi sono solamente 2 possibilità:

- si riduce l'offset (ma in questo modo si ridurrà anche la profondità di indagine)

- si aumenta considerevolmente lo *stack* (le *performance* dello *stack* aumentano "lentamente": portarlo da 5 a 7 non porta a nessun significativo miglioramento e si dovrà tentare uno *stack* ad esempio di 12).

Non abbiamo qui contemplato l'ipotesi che il problema sia nella strumentazione (non ottimizzata) o in qualche incapacità dell'operatore (cosa non sempre del tutto improbabile).

Infine si consideri che se abbiamo acquisito un primo *dataset* con *stack* 5, potremmo di fatto portarlo a 15 semplicemente acquisendo un secondo *dataset* da 10 *shot* ed effettuando poi uno stack in studio prendendo la prima serie da 5 *shot* e la seconda serie da 10 *shot* (vedi strumento di "*vertical stack*").

Per dettagli sulle procedure di acquisizione (e le varie convenzioni adottate) vedi il pdf specificatamente dedicato alle acquisizioni e presente tra i documenti del software HS (cartella "documents", file "Acquisizioni-HoliSurface-IT.pdf").

Si ricordi in particolare che la freccia dell'adesivo HS posizionato sul geofono triassiale, deve puntare verso la sorgente:

Esempio di acquisizione HF (per dettagli vedi libro Flaccovio 2019)

Cosa devo acquisire se desidero ottenere un profilo delle $V_{\rm S}$ privo di ambiguità e problematiche varie?

In termini generali sono necessari quattro elementi:

- 1) **Onde di Rayleigh** (quindi acquisizione VF)
- 2) Onde di Love (quindi acquisizione HF)
- 3) Un paio (**non** solamente uno) di HVSR [ad esempio uno a fine stendimento ed uno al centro o presso la sorgente]
- 4) Un paio di **foto** dell'acquisizione (possibilmente con informazioni GPS incluse vedi questo stesso manuale).

I nomi dei *files* devono essere rappresentativi del tipo di dati.

Ad esempio: VF_off50.seg2; HF_off50.seg2; HVSR_UD_NS_EW_receiver.seg2; HVSR_UD_NS_EW_central.seg2

Dati per analisi HoliSurface®

Se decidete di inviarci i vostri dati *HoliSurface*[®] per l'analisi ricordate di inviarci (in un unico mail) <u>tutti</u> i seguenti dati (utilizzando la nomenclatura ricordata nella precedente pagina – vedi anche i nostri 2 libri pubblicati per la Dario Flaccovio Editore):

1. **Dati** *HoliSurface*[®] **per onde di Rayleigh (VF)** [nomi files rappresentativi del tipo di acquisizione e dell'offset – ad esempio VF_off50.seg2; HF_off50.seg2 (importante inviare non solo i dati stack ma anche i singoli shots, in modo da verificare la qualità dell'intera operazione di acquisizione)]

2. Dati HoliSurface® per onde di Love (HF)

3. Due *datasets* passivi per la determinazione delle curve HVSR in due punti dello stendimento (ad esempio alla fine e a metà dello stendimento) [anche qui i nomi dei *files* devono essere rappresentativi – ad esempio: HVSR_Z_NS_EW_centrale.sg2; HVSR_Z_EW_NS_finestendimento.seg2 o HVcentro.SAF e HVricevitoreHS.SAF)

4. Foto (possibilmente geo-referenziate) dello stendimento

5. Ogni informazione disponibile riguardo la stratigrafia (e sulla profondità alla quale potreste attendervi il *bedrock*)

Se si sospettano forti variazioni laterali o, similmente, non si conosce molto del sito, è anche possibile fare un'acquisizione *diretta* ed una *inversa* (semplicemente invertendo geofono e sorgente). In questo caso al nome del file aggiungeremo appunto la dizione "*direct*" e "*reverse*" (esempio: HF_off60_direct.SAF; HF_off60_reverse.SAF).

Questo può non avere molta importanza se stiamo lavorando in piena pianura alluvionale (con sedimenti soffici e variazioni laterali ad ampissima lunghezza d'onda), ma se ci troviamo a lavorare in zone con presenza di lenti ghiaiose o in collina/montagna, allora la cosa può essere desiderabile.

L'obiettivo è quello di determinare in modo stringente il modello delle velocità di taglio nel sottosuolo fornendo altresì la stima del periodo di risonanza del sito e, in definitiva, poter al fine offrire al vostro committente un prodotto di qualità.

Si ricordi che, rispetto le operazioni di campagna, la differenza tra una buona acquisizione (vedi i primi quattro punti sopra elencati) ed una inadeguata è di fatto pari a una manciata di minuti.

In assenza di tali dati non sarà possibile dare seguito a richieste di analisi.

Due modalità per acquisire dati HS + HVSR

1) Acquisizione standard: registrare i dati attivi nel modo classico, utilizzando

il geofono trigger e la "modalità attiva" del tuo sismografo: https://youtu.be/hqjJvAxL6xQ

2) Nel caso tu abbia due geofoni triassiali (vedi i nostri geofoni HOLI3C), puoi effettuare un'acquisizione ibrida [hybrid acquisition; hybrid = tracce sismiche contenenti tanto dati passivi che attivi]. In questo modo otterrai un singolo dataset di 6 tracce da utilizzare sia per estrarre i dati passivi per la definizione delle curve HVSR ai due punti estremi dell'array sia per estrarre i dati attivi utili all'analisi HoliSurface[®] (vedi oltre in questo manuale): https://www.youtube.com/watch?v=ED gVpokZ6g

Questo modo di gestire dati *ibridi* è particolarmente importante (necessario) nel caso in cui si utilizzi un **sistema di acquisizione wireless** in cui i dati vengono registrati in continuo. Per identificare (e fare lo stack) gli *shots* attivi, lo strumento di gestione dei dati ibridi è chiaramente estremamente utile.

Incidentalmente, si tratta della stessa impostazione utilizzata per l'acquisizione di dati vibrazionali sincronizzati (vedi il capitolo "Analisi vibrazionali su strutture").

Acquisizione congiunta MAAM + HVSR

Qui un video in cui si effettua **un'acquisizione congiunta MAAM + HVSR** in una zona lagunare durante una bassa marea. Il triassiale e i 4 geofoni verticali sono collegati allo stesso sismografo ottenendo un unico file a 6 tracce poi facilmente gestito nei moduli HVSR e MAAM (in cui vengono caricate le pertinenti tracce): https://youtu.be/ltEkbHYRg5w

Acquisizioni di sismica passiva (per tutte le svariate metodologie): si raccomanda di non acquisire *files* troppo pesanti per lunghezza della registrazione e/o per campionamento eccessivamente alto perché potresti avere problemi a gestirli (oltretutto vedi il teorema di Nyquist-Shannon e considera che per le comuni applicazioni geologiche/geotecniche raramente interessano frequenze superiori a 30 Hz).

Se, per qualche motivo, desideri "monitorare" lunghi intervalli di tempo, è certamente preferibile acquisire files in sequenza. In altri termini: invece di un file unico da 12h campionato a 250 Hz si raccomanda innanzitutto di ridurre il campionamento (a cosa serve conoscere le ampiezze del segnale sino a 125 Hz?).

Inoltre è bene acquisire ad esempio 6 files da 2 ore (un sistema di acquisizione progettato e testato in modo razionale dovrebbe essere in grado di farlo automaticamente/autonomamente impostando la lunghezza della registrazione base e il numero di acquisizioni/ripetizioni).

Sempre bene dare un nome che abbia un significato (vedi citati libri) evitando nomi che non raccontano/spiegano nulla della geometria dell'acquisizione.

Tre modi per generare le onde di Love

L'acquisizione e l'analisi delle onde di Love è un **punto cruciale** nell'analisi delle onde di superficie (vedi i libri della Flaccovio del 2012 e del 2019 e relativa bibliografia).

Puoi generare le onde SH (e quindi le Love) utilizzando una classica traversina in legno come le foto seguenti:

Al fine di evitare danneggiamenti, puoi anche coprire la traversina con la piastra di polietilene utilizzata per le acquisizioni VF.

Infine, se lavori su terreni soffici, puoi scavare una piccola buca nel terreno e collocare la piastra di polietilene (quasi) in verticale come nella seguente immagine:

www.holisurface.com

5. Generali procedure di utilizzo

Quando viene lanciato *HoliSurface*[®], oltre alla finestra principale rimarrà aperta in *background* una finestra DOS in cui vengono visualizzate informazioni sul procedere delle operazioni ed analisi.

La schermata principale del software mette in evidenza (sulla destra) l'area riguardante il "*parallel computing*". Poiché tutti i computer di recente fabbricazione montano CPU *multi-core*, <u>è fondamentale attivare tutti i *cores* che saranno poi sfruttati dal software</u>.

Il numero di *cores* attivabili dipende chiaramente dal PC in nostro possesso (più precisamente dalla CPU in esso installata).

Considerato il notevole sforzo computazionale di alcuni dei moduli di analisi implementati nel software *HoliSurface*[®], <u>si raccomanda di utilizzare una CPU con almeno 8 *cores* fisici</u>.

HoliSurface® - Holistic Tool for the Analysis of Surface Wave Propagation and Vibration Data	-		×
Holistic Tool for the Analysis of Surface Wave Propagation and Vil parallel computing Parallel Computing On (40 workers) number of threads: 40	oratic rface@v - Inter	on Da vinmasw.	ta ^{com)}
Before starting 1. set the working folder i:\ELIOSOFT\Dati\Summaga\HS 2. mixed (soft sediments + gravels) [B class]	where	am 1? [Q	iPS]
Holi Surface, MAAM & HVSR passive seismics vibrations Single-Comp Inversion HVSR show multiple HVSR DIN 4150 - UNI 9614 Disp+HVSR Double-Component Inv. SSR (Standard Spectral Ratio) buildings HoliSurface Holi-Inversion (3C) MAAM 2C Inversion (Disp + HV) HV2D	ut	ilities	on)

Sopra la schermata principale prima dell'attivazione del *parallel computing* (si noti la scritta in colore rosso). Sotto la schermata successivamente all'attivazione della procedura di parallel computing (ora la scritta è in verde).

parallel	compu	ting —	_
Parallel Co (16 w	omputi orkers	ng On ;)	
number of threads:	16	activate	
working folder	mixed	(soft sedi	~

La prima cosa da fare è definire la propria *cartella di lavoro* (*working folder*), all'interno della quale saranno stati salvati i files di campagna cioè, tipicamente, il file SAF dell'acquisizione *HoliSurface*[®] e il SAF file dell'HVSR e all'interno della quali saranno automaticamente salvati i files di output delle elaborazioni.

Dalla schermata principale è anche possibile lanciare (chiaramente se il software è già installato nel PC in uso) *Google Earth Pro* (icona (S)):

Suggeriamo poi di scaricare i *video tutorials* (man mano che saranno resi disponibili) nella cartella *HoliSurface/Documents/videos* (poi accessibili da qualsiasi pannello – icona ^{SU}).

I manuali sono direttamente accessibili da qualsiasi pannello (icone <a>> – per le versioni in Italiano ed Inglese).

Nomi dei files e componenti

ZVF, RVF, ZEX, REX o THF?

Riguardo il tipo di sorgente, nella convenzione dei codici del Prof. Herrmann VF sta per *"Vertical Force"* (la classica martellata verticale), EX invece indica una sorgente esplosiva (*Explosive*). Per quanto riguarda invece la componente analizzata questa potrà essere Z o R per, rispettivamente, quella *"Vertical"* o *"Radial"*.

Per analizzare le onde di Love è invece opportuno considerare una sorgente di taglio (cioè orizzontale – HF=Horizontal Force) e geofoni posti perpendicolarmente allo stendimento (T=Transversal).

Ecco sintetizzato il significato delle componenti che è possibile simulare tramite sismogrammi sintetici (si ricordi che <u>la prima lettera</u> si riferisce alla componente registrata – che chiaramente dipende dal tipo di geofono utilizzato e dalla sua orientazione –, mentre <u>le ultime due lettere</u> indicano il tipo di sorgente utilizzata):

ZVF: forza verticale (esempio martellata o caduta di un grave) e componente verticale **RVF**: forza verticale e componente radiale

ZEX: esplosione (sub-superficiale) e componente verticale

REX: esplosione (sub-superficiale) e componente radiale

THF: forza orizzontale/trasversale (esempio martellata di taglio) e componente trasversale (parliamo quindi di onde di Love).

Qui di seguito gli stessi modelli riportati nel *box* "Modulo di Poisson e distribuzione di energia tra i modi" (diversi valori del modulo di Poisson) ma per la componente Radiale. Si noti che la distribuzione di energia tra I modi è un po' diversa (e comunque in questo caso i dati di campagna erano stati acquisiti con geofoni verticali e quindi il confronto più appropriato è con la componente ZVF – vedi nel precedente box l'ottimo accordo tra dato osservato e primo modello sintetico caratterizzato da alti valori del modulo di Poisson).

Le componenti sismiche

Cosa si intende per *componente*?

In modo molto sintetico e pratico possiamo definire la *componente* la direzione lungo la quale si sviluppa un certo moto della particella in relazione al passaggio di una certa fase (onda) sismica.

Ad esempio (vedi immagine qui sotto):

l'onda di Love si muove unicamente lungo la componente T (trasversale) [come anche la rifrazione SH];

l'onda di Rayleigh si muove lungo la componente verticale (Z) e radiale (R) [come pure la rifrazione P]

Per *analisi multi-componente* si intende l'analisi di quanto avviene lungo 2 o più delle indicate componenti (attenzione che se si volesse essere completi dovremmo registrare anche le componenti rotazionali e non unicamente quelle legate ai *displacementes* lungo i tre assi cartesiani).

Il <u>metodo</u> *HoliSurface*[®] mira a analizzare in modo congiunto (quindi in maniera olistica) tutto quello che avviene lungo tutte le tre componenti Z, R e T.

Assemblare i *files* delle onde di Rayleigh e Love

Utility "assemble VF/EX with HF"

Tanto dal pannello delle *utilities* di *HoliSurface*[®] che dai vari moduli disponibili (icona con la lettera greca sigma maiuscola, Σ), è possibile accedere al modulo per "l'assemblaggio" di files (il primo relativo alle onde di Rayleigh, il secondo a quelle di Love - vedi Capitolo dedicato all'acquisizione di dati).

Tra le *utilities*, il modulo è chiamato "*assemble VF/EX with HF*" mentre l'icona utilizzata nei vari moduli è rappresentata con una Σ (lettera greca *sigma*).

Qui è possibile assemblare le due acquisizioni (quindi i due files) per ottenere un unico file SAF con le seguenti caratteristiche: le prime due colonne rappresentano le componenti verticale e radiale delle onde di Rayleigh mentre la terza colonna le onde di Love.

Si ricordi che l'analisi congiunta Rayleigh + Love è fortemente consigliata.

Il file#1 (**VF** - Vertical Force) riguarda le onde di Rayleigh (componente verticale = prima traccia dalla sinistra; componente radiale = seconda traccia dalla sinistra - vedi croci nere nelle immagini sotto riportate) mentre il file#2 (**HF** - Horizontal Force) quelle di Love (la componente T (che deve stare sulla terza traccia - vedi croce rossa nelle immagini sotto riportate).

Qui di seguito un esempio di assemblaggio di 2 files (VF e HF).

www.holisurface.com

HoliSurface[®]

Il file ottenuto sarà poi caricato nei pannelli "*Disp+HVSR*" o "*HoliSurface*" consentendo quindi una facile analisi congiunta Rayleigh + Love + HVSR.

pag. 59

Foto e dati GPS nelle applicazioni ELIOSOFT (winMASW[®], HS[®] & ELIOVSP[®])

In tutti i pannelli, è possibile caricare un'immagine (da includere nel *report*) e, nel caso in cui tale immagine contenga informazioni GPS (diverse *App* del tuo cellulare possono farlo [ad es. **MapCam** o **GPS Map Camera**] così come tutte le *action cam* [es. **GoPro**] e i **droni**), tali informazioni GPS (latitudine, longitudine, altitudine e numero di satelliti) verranno riportate e mostrate nel *report* di output.

Ovviamente è possibile caricare qualsiasi foto si voglia inserire automaticamente nel proprio *report*, anche senza che questa contenga le informazioni GPS.

MapCam

mozwsemniw.www

GPS Map Camera

Action cameras

שמכישפשחחושיששש

www.HoliSurface.com

412 N
.2476 E

Long: 13.3986798900005847912098 E

www.holisurface.com

6. Preparazione dei dati e modellazione diretta

Vi sono al momento due moduli utili al caricamento dei dati e alla predisposizione degli stessi per la modellazione del dato (con ricostruzione del profilo verticale della Vs).

Il primo (modulo "*Disp+HVSR*") è atto a elaborare dati relativi alla dispersione delle onde di superficie (velocità di gruppo) + HVSR, mentre il secondo ("*HoliSurface*") serve ad elaborare dati *HoliSurface*® (unitamente eventualmente all'HVSR).

Impara a modellare e invertire

Come ampiamente motivato nel libro della Flaccovio (*Onde di Superficie in Geofisica Applicata*), invece di una procedura di *inversione automatica*, è spesso consigliabile la *modellazione diretta* in cui l'utente modifica i parametri del modello al fine di ottenere una buona coerenza tra dato osservato e sintetico.

Del tutto indicativamente, i valori tipici di Vs per i più comuni materiali sono:

materiale	Vs (m/s)
Suoli scadenti e torbe	50 – 130
Suoli compatti	130 – 300
Suoli molti compatti e ghiaie	300-600
Conglomerati, rocce alterate	600-1000
Roccia integra	> 1000

Non dimentichiamo poi di inserire valori del modulo di Poisson che abbiano un senso rispetto alle reali condizioni dei sedimenti (valori alti in caso di sedimenti saturi e bassi in caso contrario).

Pulitura del dato

Da entrambi i pannelli ("*Disp+HVSR*" e "*HoliSurface*") è possibile pulire il dato in modo da ottenere spettri di velocità (ed eventualmente curve RVSR e RPM) il meno inquinati possibile dalle influenze delle onde di corpo (in particolare le rifratte).

È bene infatti sottolineare che tutte le analisi svolte sono svolte considerando che il segnale siano costituito dalle sole onde di superficie.

Sicuramente la prima accortezza da considerare già in fase di acquisizione per evitare onde di corpo di eccessiva ampiezza è utilizzare offset sufficientemente grandi da rendere l'ampiezza delle onde di corpo trascurabile.

In fase di analisi / preparazione del dato è poi possibile pulire un po' il dato con lo strumento/pulsante "*remove data*" (vedi menzionati pannelli, subito a destra del plot delle tracce sismiche). Il loro utilizzo è praticamente identico a quello utilizzabile in fase di analisi dei dati per analisi HVSR (vedi Capitolo 9).

Attenzione: se lo zero dei nostri dati corrisponde alla "martellata" (come normale in caso di acquisizione di dati attivi) non vanno tolti dati "prima"!

Se lo faceste alterereste (anticipandoli) i tempi di arrivo delle onde di superficie (si ricordi che nel metodo HS si considerano le velocità di gruppo e non di fase).

6.1a Acquisizioni ibride: estrazione dati attivi ed elaborazione dati passivi HVSR

Anzitutto, suggeriamo di dare un occhio al video riguardo la "procedura di acquisizione ibrida (attiva + passiva)" da un punto di vista molto pratico (sono necessari due geofoni triassiali e un'acquisizione passiva):

I due geofoni triassiali HOLI3C devono essere disposti ("piantati") in modo che la componente *radiale* (che corrisponde alla line anche unisce I due geofoni) sia la stessa per entrambi. Anche il *verso* (che determina la *polarità* della traccia R) deve essere lo stesso. Come sempre, la freccia sull'adesivo HS del geofono posto alla posizione del ricevitore (*receiver position*) deve puntare alla sorgente:

Se si esegue correttamente questa operazione (utilizzando un *sistema di acquisizione* progettato e testato per questo tipo di tecniche), si ottiene un *dataset* "ibrido" (contenente cioè sia dati *attivi* che *passivi*) con 6 tracce: le prime tre si riferiscono al geofono triassiale lontano dalla sorgente mentre le tracce #4, #5 e #6 al triassiale presso la sorgente. I dati contengono *sia* i microtremori di fondo (per l'HVSR, ma non solo), *sia* le mazzate effettuate all'inizio dell'acquisizione (per l'HS).

I dati vengono quindi utilizzati *sia* per calcolare le curve HVSR nei due punti estremi dell'*array*, *sia* per estrarre i dati attivi (le "mazzate" date ad inizio acquisizione) da utilizzare per l'analisi della dispersione e della RPM (tecnica HS).

Calcolo delle curve HVSR dei due punti estremi

È necessario sottolineare che le 6 tracce del *dataset* ottenuto vengono analizzate per ottenere le curve HVSR nelle due posizioni estreme. Il calcolo delle curve HVSR viene effettuato seguendo la procedura illustrata nella sezione "**HVSR: analisi, modellazione e inversione**". Considerando due curve HVSR è possibile verificare la loro coerenza. Se le due curve sono molto simili, significa che i dati sono corretti e non sono presenti variazioni laterali significative. Se le curve sono diverse, vi sono due possibili ragioni: **a)** sono presenti variazioni laterali significative [per approfondimenti, vedi il libro Springer 2020].

Elaborazione dei dati:

- 1) creare due sottocartelle: **HVSRrcv** (rcv=receiver) and HVSRsrc (src=source)
- 2) nel pannello HVSR, impostare la *cartella di lavoro* per il primo HVSR [ad esempio **HVSRrcv**]
- 3) caricare il dataset ibrido costituito da 6 tracce
- 4) viene ora visualizzata una finestra di dialogo che consente di selezionare le 3 tracce (UD, NS e EW) relative al geofono triassiale vicino al *ricevitore* [se si utilizza il nostro *sistema di acquisizione* e si è impostata correttamente l'acquisizione, si devono ad esempio scegliere le tracce 1 2 e 3]
- 5) analizzare i dati selezionati secondo le consuete modalità (vedi la sezione "HVSR: analisi, modellazione e inversione" di questo manuale)

Ora possiamo selezionare ed elaborare i dati relativi al secondo geofono triassiale (quello nei pressi della sorgente).

- 6) nel pannello HVSR, modificare la *cartella di lavoro* per il secondo HVSR [ad esempio **HVSRsrc**]
- 7) caricare nuovamente il dataset ibrido di campagna di 6 tracce
- 8) si aprirà la stessa finestra di dialogo per selezionare le 3 tracce (UD, NS e EW) relative al geofono triassiale collocato vicino alla sorgente [se si utilizza il nostro sistema di acquisizione e si è impostata correttamente l'acquisizione, si devono indicare le tracce 6 5 e 4].
- 9) elaborare i dati selezionati come di consueto

A questo punto abbiamo definito le curve HVSR nei due punti estremi e le elaborazioni sono in due cartelle diverse (lo scopo, ricordiamolo, è verificare la congruenza complessiva e l'eventuale presenza di variazioni laterali significative).

Estrazione degli *shots* attivi

Il *dataset* di 6 tracce contiene anche gli *shots* attivi che possiamo facilmente estrarre, salvare e utilizzare per la nostra analisi HS (dispersione).

Sia dal pannello "**HS (disp) + HVSR**" che in quello "**HoliSurface**" (dal pannello HS principale), si accede al relativo strumento tramite il pulsante " **HYBRID data:** extract active shots".

HoliSurface[®]

Segui il nostro canale **YouTube** per vedere un *video tutorial* in cui viene mostrato come estrarre gli *shots* (che possono essere sia VF che HF - immaginate ad esempio di aver fatto prima 10 *shots* VF [per le onde di Rayleigh] e poi 10 *shots* HF [per lo onde di Love]).

Cliccando il **pulsante** "**HYBRID data: extract active shots**" si potrà scegliere tra l'opzione a *file* unico (per il tipo di acquisizione "classica" qui considerata, che ci fornisce un file unico a 6 trqacce) o con due *files* separati (chiaramente tra loro perfettamente sincroni – è questo il caso di dati acquisiti con il **sistema SmartSolo** affrontato successivamente).

In questo caso carichiamo dunque il *dataset* ibrido di 6 tracce e definiamo i 3 canali (Verticale, Radiale e Trasversale) del <u>geofono triassiale **ricevente**</u> (quello lontano dalla sorgente), l'*offset* (cioè la distanza tra la sorgente e il geofono triassiale ricevente) e la traccia da utilizzare come *trigger* (da scegliere tra le 3 tracce del geofono triassiale posto nei pressi della sorgente).

Il *software* identificherà automaticamente gli *shots* (le tue mazzate) e mostrerà i segnali identificati.

Per ogni singolo segnale identificato bisogna scegliere fra tre possibili opzioni:

- 1) il segnale identificato si riferisce ad una mazzata/shot VF [opzione#1]
- 2) il segnale identificato si riferisce ad una mazzata/shot HF [opzione#2]
- 3) il segnale identificato è di scarsa qualità e deve essere scartato [opzione#3]

Naturalmente bisogna ricordare che i primi 10 *shots* (ad esempio!) sono stati effettuati come VF [per generare onde di Rayleigh] e i successivi 10 (ad esempio!) come HF [per generare onde di Love].

Si vedano attentamente gli *snapshots* riportati di seguito (che si riferiscono a un *dataset* registrato in un'area industriale *estremamente* rumorosa).

Al termine della procedura, il *software* salverà ogni singolo *shot* (come file VF o HF a seconda della decisione dell'utente) ed effettuerà lo stack (ottimizzato) di tutti gli *shots* VF e HF [tutti i *files* vengono automaticamente salvati nella cartella di lavoro].

www.holisurface.com

Per ogni *shot* è necessario definire se si tratta di acquisizione VF (1) or HF (2). Se la qualità è scarsa (vedi *snapshot* qui di seguito), indica semplicemente 3 (ad indicare al software di rigettare [*reject*] lo *shot* in questione).

6.1b Acquisizioni ibride con sistema SmartSolo

Chi utilizza il sistema della SmartSolo (che ELIOSOFT fornisce unitamente al training per un suo corretto utilizzo), effettuerà le acquisizioni con due unità (nodi) posti ad una certa distanza l'uno dall'altro. All'atto di scaricare i dati nel computer, sceglierà l'opzione che consente di salvare due *files* separati per i due triassiali. I files del nomi dei ottenuti sarà qualcosa tipo "590002523.0001.2023.11.28.12.01.00.000.ENZ.seg2" е "590002525.0001.2023.11.28.12.01.00.000.ENZ.seg2". La prima serie di numeri indica il numero di serie del nodo mentre le ultime tre lettere del nome del file chiaramente indica il formato delle tracce: EW (cioè trasversale), NS (cioè radiale) e verticale. Cliccando il pulsante "HYBRID data: extract active shots" (vedi pannello nell'immagine qui di seguito) si potrà scegliere tra l'opzione a file unico (vedi procedura precedente) o con due files separati (chiaramente tra loro perfettamente sincroni – è questo il caso di dati acquisiti con il **sistema SmartSolo**). Cliccando guesta seconda opzione si andrà a caricare prima il file riferito al sensore presso la sorgente (SOURCE) e successivamente quello lontano (RECEIVER). Il resto della procedura sarà pressoché identica a quanto sopra descritto con la differenza che il software, leggendo le informazioni GPS contenute nei dati, proporrà automaticamente il valore dell'offset (certamente da verificare con cura) e fornirà delle mappe con il posizionamento delle due terne.

6.2 Modulo "HS (disp) +HVSR" [Dispersione + HVSR]

È il modulo di base che suggeriamo per i normali lavori di carattere professionale e consente l'analisi congiunta della dispersione e dell'HVSR.

Da questo pannello (come dal simile "*HoliSurface*") si caricano i dati di campagna di sismica attiva (file di dati SAF) e la curva HVSR precedentemente calcolata (vedi Capitolo dedicato alle analisi HVSR e relativo video tutorial disponibile all'interno della cartella "Documents") per poi procedere alla modellazione congiunta.

In questo pannello/modulo è anche possibile effettuare la modellazione della sola

<u>curva HVSR.</u> Per farlo è sufficiente caricare la curva HVSR precedentemente calcolata (vedi Capitolo dedicato al computo della curva HSVR) trascurando di caricare dati sismici attivi. La modellazione è poi effettuata semplicemente variando i parametri del modello (principalmente V_s e spessori) sulla base delle informazioni stratigrafiche disponibili e calcolandone (pulsante "**compute**") poi l'HVSR sintetico sino ad ottenere un buon *match* (accordo) con la curva HVSR di campagna.

Alla fine sarà sufficiente cliccare il pulsante Report.

Si ricordi che la curva HVSR è altamente non-univoca: da un'unica curva vi sarà possibile ricavare svariati modelli del sottosuolo (vedi tutta la letteratura). L'analisi della sola curva HVSR è quindi sconsigliata.

HoliSurface 9 - GROUP velocities and Rayleigh-wave Particle Motion from Active Data and/or PHASE Velocities from MAAM (HVSR)	- 🗆 X
😑 🖆 ∑ 🛰 R T V FFT SP 📹 🌋 HV 🦂 🐙 🖑 🔍 🔍 🛞 🖾 🤣 🤣		×
ac e ®	data and HVSR (+ RPM) select data seclect 60 cancet sere	general settings ? oreference depth ? refraction ? with R from body waves
Surt	renove data Innew locition Please uplead your HVSR (passive selemics) file (<i>hv</i>) RPM analysis	(mis) Cis Posson Cip (m) 60 8 0.35 8 0.3 160 20 0.35 20 0.5 280 35 0.35 35 1
Ноц	2 28 RML carre Mil back azmuth	350 44 0.35 44 2 360 45 0.35 45 3 450 56 0.35 56 4 320 40 0.3 40 5
fools 	show trigger velocity spectra (and MAAM dispersion)	390 49 0.25 49 7 370 46 0.25 46 11 450 56 0.25 56 20
 Vertical geophone 36 geophone 	MAAN weeker MAAN DC effective phase vel HS www.holisurface.com	550 69 0.2 69 100 1200 150 0.2 150 model upload show M & R save reference freq. (Hz): 5
	Source	k factor: 8 apply number of modes: 6 Rayleigh-wave source: V7 V
	(transversal component)	detal: reasonable v verbose Velocity Spectra v
save vertical spectrum. Rayleigh waves: group-velocity sp	save radial spectrum ectra 250 show velocity Ecver waves: group-velocity spectrum Site Response	refresh compute 2C inversion 1C inversion 3C inversion joint disp +HV

schermata prima del caricamento dei dati (pannello "disp+HVSR")

Procedura step-by-step:

1. Caricamento del file SAF di campagna (seconda icona presente sulla barra degli strumenti da sinistra) di sismica attiva *HoliSurface*[®] (vedi Capitolo dedicato alle acquisizioni *HoliSurface*[®]).

HoliSurface . GROUP velocities and Rayleigh-wave Particle Motion from Active Data and/or PHASE Velocities from MAAN	(+ HVSR)	- 🗆 X
😑 🖆 ∑ 🛰 R T 🗸 FFT SP 📻 🌋 H/V 🦂 🐙 🖄 🥄 🔍 🔍 🧶 🧶 🎯		
	data and HVSR (+ RPM)	general settings
offset (m): 70	Net data	reference depth refraction
	GACH BAY	U.3 alfa factor (SW)
(s) amin	remove data show to action Please upload your HVSR (passive setsmica) file (hv)	(m/s) G (m) 60 8 0.35 8 0.3 160 20 0.35 20 0.5
	80M analysis 2 20	280 35 0.35 35 1 350 44 0.35 44 2
	RM carve full back comuth	360 45 0.35 45 3 450 56 0.35 56 4
Z R T components		320 40 0.3 40 5 390 49 0.25 49 7
tools (4.998) time length to visualize (sec) dane cut filter decimate		370 46 0.25 46 11
grou	p-velocity spectra (and MAAM dispersion)	450 56 0.25 56 20
C geophone	MAAM updexs IIIAAU 0C defetcive phase vel HS www.holisurface.com	000 05 02 05 100 1200 150 02 150 model upload show M & R save
	Z (verticel component)	reference freq. (Hz): S k factor: 8 apply number of modes: 6
	source (transversal component)	detai: ressonable v
		Velocity Spectra v
save vertical spectrum	save Love-wave spectrum save radial spectrum	compute
dataset: 51/G_combined-RayLove.saf Rayfelgh waves: group-velocity offset: 70 m sampling: 1 ms	spectra 250 show vectory Kove waves: group-relocity spectrum reporting and depth _ house RMI _ so _ pat therapy R	2C inversion 1C inversion 3C inversion joint disp +HV

Caricamento dati attivi (HS) di campagna: indicate le tre componenti (Z, R e T)

HoliSurface 8 - GROUP velocities and Rayleigh-wave Particle Motion from Active Data and/or PHASE Velocities from MAAM	1 (+ HVSR)	- 🗆 X
😑 🖆 ∑ 🛠 R T V FFT SP 📷 💣 HV 🦂 🐙 🖏 🔍 🧠 🧐 🖾 🤣 🎯		,
offset (m): 70	data and HVSR (+ RPM)	general settings ?
	veloc dala schwärk sebect 60 cantest save	refraction HVGR from body waves 0.3 alife factor rSWI Vs (m/s) Cs Prisson 0.03 8
STOP	Pedde upoda your nvok (pasare selemica) ne (.nv) RPM analysis 2 20 RPM carve ful back azmuth	160 20 0.35 20 0.5 200 55 0.35 15 1 550 44 0.35 44 2 560 45 0.35 5 4 450 56 0.35 56 4 500 40 0.35 66 4
1 bolo (2.745) time ends to visualize (sac) (denie) (out)	p-velocity spectra (and MAAM dispersion)	330 45 0.25 48 7 370 46 0.25 46 11 450 56 0.25 56 20 550 69 0.2 69 100 1200 150 0.2 150
	elective prese vel	model upload show M & R save reference freq. (Hz): 5 k factor: 8 annih
and of the second	source	number of modes: 6 Rayleigh-wave source: VF ~
	(transversal component)	detait reasonable v verbose Velocity Spectra v
asve vertical spectrum	save Love-volve spectrum	refresh
dataset: ST0_conkined-RayLowCLEAN-mREFRACTIONCLEAN_correctly_rolated_Sep2 Rayleigh waves: group-velocity ofset: 70 m ofset: 70 m	spectra 220 show velocity Love waves: group velocity spectrum reporting sectors 2.5 show velocity Love waves: group velocity spectrum 4.0 _ Just Thir River 4.0 _ Just Thir River	2C inversion 1C inversion 3C inversion joint disp +HV

Pulitura del dato tramite 2 strumenti: "cut" (rimozione dati in eccesso) e "select data" rimozione rifrazione, code, ecc.

2. Se questi dati rappresentano un'acquisizione per le onde di Rayleigh, clicca sul pulsante "*Rayleigh waves: group velocity spectra*". In questo modo si otterranno gli spettri di velocità delle componenti verticale e radiale dell'onda di Rayleigh.

3. Si carichi la curva HVSR precedentemente calcolata (vedi toolbar - con i vari helps)

Siamo a questo punto pronti per la **modellazione** del dato (svolta in modo del tutto analogo a quanto si fa per qualsiasi altro metodo - vedi ad esempio *video tutorials* sulla modellazione diretta in *winMASW*[®] e i prossimi *video tutorials* di *HoliSurface*[®]).

www.holisurface.com

HoliSurface[®]

In pratica si modificheranno V_S e spessori (e si può anche utilizzare lo strumento di inversione congiunta automatica) sino ad ottenere una soddisfacente coerenza tra dato osservato e modellato.

Se il dato caricato conterrà anche i dati relativi alle onde di Love (vedi box "Assemblare i files delle onde di Rayleigh e Love"), sarà possibile considerare anche quelle. Per farlo si dovrà cliccare sul pulsante "*Love waves: group velocity spectrum*". A questo punti, in luogo della componente radiale dell'onda di Rayleigh (sulla sinistra in basso del pannello), si otterrà lo spettro di velocità di gruppo delle onde di Love:

Schermata contenente i dati relativi a: HVSR osservato, spettro di velocità della componente verticale (onda di Rayleigh) e spettro di velocità delle onde di Love.

A questo punto la modellazione che si andrà ad eseguire sarà relativa a: componente verticale delle onde di Rayleigh + onde di Love + HVSR.
Pulsante "verbose" (nel "forward modeling")

Attivando questa opzione si ottengono due possibili risultati a seconda di quale opzione di *modeling* è in quel momento attivata:

1. "Vel Spectra & RVSR": in questo caso su un plot esterno si otterranno le tracce sintetiche e i pertinenti spettri di velocità di gruppo (e/o l'RVSR)

2. "Modal Disp Curves": in questo caso in un plot esterno si otterranno le curve di dispersione della velocità di fase (quelle di gruppo saranno plottate sugli spettri di velocità dei dati di campagna)

Esempio - caso studio

Un esempio di questo tipo di approccio è disponibile tra i casi studio presenti nella cartella "Documents" (dataset *Natissa*).

Parametri Alpha0 & Alpha1

La forma dei filtri utilizzati per determinare gli spettri di velocità di gruppo dipende da due parametri (Alpha0 e Alpha1): non esistono dei valori *perfetti* in termini assoluti e tutto dipende dal tipo di dati (dalle caratteristiche della dispersione e dal tipo di segnale oggetto di analisi – offset e sorgente).

- velocity (m/s)		
20 600	Spectral analysis: number of samples	16384
minimum maximum		
	Traces to consider	1:1:24
- frequency (Hz)	This have a morehient. Last trace	
1 60	Alpha0 (see manual)	120
minimum maximum		
	Alpha1 (see manual)	0.01

La prima (sopra) mostra i ritardi in funzione dell'*offset* mentre la seconda (sotto) riporta sulla sinistra l'ultima traccia considerata relazionando i ritardi alle velocità di gruppo (spettro sulla destra).

6.3 Analisi RPM (Rayleigh-wave Particle Motion)

Si tratta di analizzare il moto determinato dal passaggio dell'onda di Rayleigh. Per una comprensione di questo genere di analisi è assolutamente necessario seguire un corso di formazione specificatamente dedicato al software *HoliSurface[®]* (e/o *winMASW[®] Academy*) e a tutte le metodologie in esso implementate.

6.3.1 Corretta Acquisizione dei dati

Per effettuare queste analisi è fondamentale acquisire i dati in modo assolutamente puntuale e rigoroso. In questo caso non conta infatti unicamente la *direzione* ma anche il *verso*. Per essere sicuri di acquisire i dati in modo corretto, effettuate le acquisizioni con strumentazione da noi esplicitamente approvata (cioè testata al fine di verificare la correttezza del *verso* del proprio geofono triassiale).

Assicuratevi cioè di utilizzare geofoni triassiali con l'adesivo HS come quello qui sotto riportato e puntate la freccia in direzione della sorgente (VF) utilizzata.

Qui nel seguito alcune informazioni di base (si consideri che per ciascuna azione/analisi <u>le</u> <u>immagini e i dati risultanti sono automaticamente salvati nella cartella di lavoro</u>).

Computo dati/curva RPM

Immediatamente a destra delle tracce sismiche caricate vi è il box "RPM analysis". Sono tre i pulsanti presenti:

 Pulsante "RPM curve": calcola la curva RPM dei dati caricati che è automaticamente salvata nella cartella di lavoro (file con estensione .RPM). <u>Tale</u> <u>curva è poi utilizzata nell'inversione dei dati stessi ed è quindi l'oggetto</u> <u>principale che interessa a fini applicativi.</u>

(si ricordi che +1 significa moto retrogrado mentre -1 progrado)

2. Pulsante "full analysis ": effettua il calcolo di molte altre quantità utili a studi molto avanzati illustrati durante i nostri incontri formativi (come sempre i grafici sono automaticamente salvati nella cartella di lavoro). L'azimuth è calcolato in senso orario partendo del "Nord" strumentale.

HoliSurface®

Curve correlazione – azimuth frequenza per frequenza

Moto della particella nel piano Z-R (frequenza per frequenza)

Traccia verticale dopo l'applicazione della *trasformata di Hilbert* e traccia radiale con la curva di correlazione come funzione dell'azimuth (nell'intervallo di frequenza indicato dall'utente).

Si ricordi che +1 significa moto retrogrado mentre -1 progrado.

Correlazioni in funzione dell'azimuth (nell'intervallo di frequenza indicato dall'utente) e in funzione della frequenza (considerando il piano Z-R, quindi azimuth zero).

Rappresentazione 3D del fattore di correlazione in funzione della frequenza e dell'azimuth.

3. Pulsante "Particle Motion": nella cartella di lavoro viene anche automaticamente salvato un video che rappresenta il moto della particella sul piano Z-R, alla frequenza indicata dall'utente nel rispettivo campo.

35

R component

35

6.3.2 Inversione congiunta ZVF+RVF+RPM (o RVSR o HVSR)

Se dal pannello "HoliSurface" si mantiene aperta la finestra di sintesi del "Rayleigh-wave Particle Motion" (RPM) e si va a cliccare il modulo per l'inversione congiunta a tre componenti (pulsante "3-obs inversion" in basso a sinistra), si andrà ad effettuare un'inversione congiunta a tre componenti:

i due spettri (Radiale e Verticale) dell'onda di Rayleigh e la relativa curva RPM (vedi figura riportata qui di seguito).

Per ulteriori informazioni sulle varie possibilità inerenti li modulo "3-obs inversion", vedi la sezione "7.3 Modulo 3-obs Inversion (inversione a tre observables)".

6.4 Modulo HoliSurface®

In questo modulo è possibile caricare i dati e determinare spettri di velocità di gruppo delle onde di Rayleigh e RVSR + spettro di velocità di gruppo delle onde di Love. Successivamente si procede con la modellazione diretta del dato (sempre da preferire rispetto all'inversione automatica).

Schermata "vergine" all'apertura del modulo HoliSurface

Di seguito la procedura (consigliata) da svolgere in caso si sia precedentemente assemblato un file (unico) con le onde di Rayleigh e Love (vedi box " Assemblare i files delle onde di Rayleigh e Love ").

Procedura:

1. Caricare il dato (secondo pulsante da sinistra lungo la barra degli strumenti – il primo pulsante serve a definire la cartella di lavoro):

MolSurface® - GROUP velocities and Rayleigh-wave Particle Motion from Active Data and/or PHASE Velocities from MAAM (+ HVSR)		-		×
A R FFT SP ≤ B HV ★ Q < (0) A Ø Ø < (0)				
offset (m): 40	data & spectral ratio	gener	al setting:	8 ?
		refraction	(45	
		0.3 alfa factor (SV	Ŵ	thk
2 2 2 2		(m/s) Cs Poiss 60 8 0.35	on Cp	(m) 0.3
Please upload your MVSR (passive seismics) file (.hv) PBM analysis PBM analysis		160 20 0.35 280 35 0.35	5 20 5 35	0.5
4 2.20 RPII curve		350 44 0.35 360 45 0.35	6 44 6 45	2
		450 56 0.35 320 40 0.3	56 40	4
Components		390 49 0.25 370 46 0.21	5 49 5 46	7
group-velocity sp	ectra (vertical & radial components)	400 50 0.25 550 69 0.2	50 69	20 50
MAAAU upbed MAAM DC Terfchur observer		800 100 0.2 model	100	_
		reference freq. (Hz	kR save	
		k factor: 8	apply	r
	5	number of modes: Rayleigh-wave source:	6 VF	~
		detail: reas	ionable	~
		Velocity Spectra		
save vertical spectrum	save radial spectrum	refresh	calculat	te
dalaset Contrinder Ray Cove-Offseklö salf delset 40 m 250 werks group-velocity spectra group-velocity spectra group-velocity spectra (Love warks: group-velocity spectra max degla) ampling 1 ms	include RPM report	2C inversion 3C inversion	1C inversio joint disp +F	un ł∨

Si vede come il dato utile non va certamente oltre (indicativamente) i 1.2 secondi e, inserendo tale valore nel campo in basso a sinistra [gruppo *tools*] visualizziamo i tempi sino a solo 1.2 s. A questo punto, se tale valore ci va bene (siamo certi che oltre i 1.2 secondi non vi è segnale utile), effettuiamo la definitiva rimozione dei dati con il **pulsante "cut"**.

∑ 🛰 R FFT SP 📷 🌋 H/V 🦂 🐙 🥎 🔍 🤍 🎯 🖾 🤣 🥥 🥥							
	select data active select 00 cancel save		data & spectral ratio	0 refe refra HVSR 0.3 al Vs	ge rence de ction from body fa factor	pth waves (SW)	sttings
	remove data show location	Please upload your HVSR (passive seismics) file (.hv)		(m/s) 60 160	8	0.35	8 20 25
	2 20 RPM curve			350	44	0.35	44
	full back azimuth			450	56 1	0.35	56
1.2 39.99999 39.999995 40 40.000005 40.00001 40.000015 40.00002	2 40.000025 40.00003			320	40	0.3	40
				390	49	0.25	49
1.2 time length to visualize (sec) done could filter	decimate			370	46	0.25	46
		group-velocity spectra	(vertical & radial components)	400	50 0	0.25	50
	MAAM			550	69	0.2	69
	upload MAAM DC			800	100	0.2	10
	effective phase vel			upload	show	M&R	
				referen	ce freq.	(Hz):	1
				k fact	er.	8	
				numb	er of mod		
				Rayleigh-wi	ave sour	be:	V
				de [etait [easonat se	ble
				Veloci	ly Spectr	8	
				refra	ch	0	calo
save vertical spectrum		save Love-wave spectrum	save radial spectrum	10111	011	100	

A questo punto possiamo pulire ulteriormente il dato con gli strumenti del **gruppo** "*select data*" (a destra delle tracce sismiche). Si deve quindi prima attivare ("activate") il poligono

HoliSurface®

rosso (l'obiettivo è mantenere solo i dati all'interno del poligono stesso). Muovendo gli angoli del poligono se ne modifica la forma e quando avremo definito ciò che vogliamo mantenere andremo a cliccare sul **pulsante** "**select**" [a quel punto i dati al di fuori del poligono saranno azzerati].

HollGurdsce 9 - GROUP velocities and Ray/eigh-wave Particle Motion from Active Data and/or PHASE Velocities from MAAM (- HVSR)	- 🗆 X
□ 2 2 3~ R FFTSP (送 HV 米 現 ② 3, 3, 30 回 参 参)	
data & spectral	atio general settings
Please upload your HVSR (passive selences) His (hv) Please upload your HVSR (passive selences) His (hv) Please upload your HVSR (passive selences) His (hv) Please upload your HVSR (passive selences) His (hv)	Vints Diss Poisson Diss Diss <thdiss< th=""> Diss</thdiss<>
bole 12 the length to visualize (sec) done. Out the end of the e	390 49 0.25 49 7 370 48 0.25 46 11 400 50 0.25 50 20 550 69 0.2 69 50
URAMI DC c effective phase vel	000 100 92 100 mode upload show MLR save reference freq. (Hz): 5 k factor: 6 nuclear of modes: 6 Rayleigh-wave source: yr
save vertical spectrum size trade spectrum	detait reasonable v verbose Velocity Spectra v refresh calculate
dataset Conbined RayLone-office40 saf dataset 40 m sampling: f ms	2C inversion 1C inversion t 3C inversion joint disp +HV

HoliSurface® - GROUP velocities and	I Rayleigh-wave Particle Motion from Active Data and/or Pl	HASE Velocities from MAAM (+ HVSR)				-	0
🔁 🕹 🖉 R FFT SP 🛅 🗃 F	HVV 🔏 🛠 🥨 🛃 % 🛞 🖂 🧐 🧐 🕞						
© 0.2	offset (m): 40	select data scitivate select 60 cancel save		data & spectral rabo	0 referen refractik HVSR from 0.3 alfa	" general ce depth n n body wave factor (SW)	settings
0.4 (i) (ii) (iii)) ((iii)) ((iii)) ((iii		remove data show location			Vs (m/s) Qs 60 8	Poisson	Qp (n 8 0
S 0.8-	* 5	RPM analysis	Please upload your HVSR (passive seismics) fi	le (.hv)	160 20 280 35	0.35	20 0 35
		RPM curve			350 44 360 45	0.35	44 2
1.2	Z R components	T			450 56	0.35	40 5
tools 1.2 time le	angth to visualize (sec) done cut filter	decimate			390 49 370 46 400 54	0.25	49 46 1
		MAAM upbed IIAAM DC effective phase vel		угор-техну эрски (телики в таки сопровено)	550 65 800 100 model upload reference	0.2 0.2 show M & I freq. (Hz):	69 1 100 R save 5
					number o Rayleigh-wave deta	f modes: .source: # rease	6 VF v
					Velocity 5	verbose ipectra	~
save vertical spe	ectrum		save Love-wave spectrum	save radial spectrum	refresh	1 1	calculate
ataset: Combined-RayLove-offset40.saf Ifset: 40 m		Rayleigh waves: group-velocity spectra	Love waves: group-velocity spectrum	reporting	2C invers	ion 1	C inversion

Il **pulsante** "**cancel**" serve a fare marcia indentro nel caso ci siamo pentiti di aver tagliato malamente il dataset mentre il **pulsante** "**save**" ci consente di salvare il dataset ripulito secondo le nostre valutazioni.

2. Determinare gli spettri di velocità di gruppo delle onde di Rayleigh (e RVSR) [pulsante "Rayleigh waves: group-velocity spectra (& RVSR)"]

Come scegliere le frequenze minima e massima? Considerando i fondamenti della propagazione delle onde di superficie e le caratteristiche di massima del sito. In termini generali possiamo dire che:

1. per la *frequenza minima*: non scendere sotto la metà della frequenza proprio del geofono in dotazione (a meno di avere a che fare con geofono equalizzati). Fattori determinanti sono comunque *l'offset e il tipo di sorgente* utilizzati in fase di acquisizione.

2. per la *frequenza massima* dipende moltissimo dal sito. Lavorando su alluvioni può bastare lavorare indicativamente tra 3 e 20 Hz, su ghiaie tra 10 e 40 eccetera [vedi *workshops* e casi studio].

Attenzione: la curva RVSR è un "oggetto" (*observable*) molto sensibile. Il suo andamento è influenzato, tra l'altro, da quanto puliamo i dati. Si raccomanda quindi di utilizzarlo solo in caso di *perfetta* padronanza di tutto quanto riguarda la propagazione delle onde di superficie, di corpo e di tutto quanto concerne l'analisi del segnale.

D'altra parte, la **curva RPM** è invece significativamente più "stabile" e quindi preferibile (vedi ad esempio **Dal Moro & Puzzilli, 2017**).

Qui di seguito un esempio di classica analisi HS *pura*: i grafici *a*) e *b*) riportano gli spettri di velocità di gruppo del dato di campagna (colori in sottofondo) e del modello sintetico) (linee nere di conturaggio); *c*) la curva RVSR di campagna e sintetica. Sulla destra è riportato il profilo V_S confrontato anche con quello ottenuto da dati *downhole* (VSP).

Da "A Comprehensive Seismic Characterization via Multi-Component Analysis of Active and Passive Data" - Dal Moro et al. (2015).

Onde di Love

Nel caso si siano acquisiti anche dati relativi alle onde di Love, determinare lo spettro di velocità delle onde di Love [pulsante "*Love waves: group-velocity spectrum*"]. Questo sostituirà il RVSR (vedi snaphot qui di seguito).

Possiamo ora procedere con la modellazione diretta (congiunta Rayleigh + Love) ben considerando il problema delle anisotropie delle V_S (argomento al momento purtroppo pochissimo noto ed esplorato nel mondo della ricerca).

Prima andremo a capire i dati utilizzando le curve di dispersione modale (opzione "*Modal Disp Curves*" nel menù pop-up sopra il pulsante di calcolo "*calculate*").

Quando ci saremmo orientati un po' passeremo alla modalità "*Velocity Spectra*" (con il quale andremo a plottare i picchi degli spettri di velocità del dato sintetico.

Da sottolineare il fatto che è anche possibile caricare la curva HVSR di campagna (pulsante "HV" nella barra degli strumenti). Attivando poi la modellazione HVSR (numero di modi maggiore di zero e/o HVSR da *body waves*) si modellerà quindi anche l'HVSR.

Reporting (pulsante "include RVSR")

Quando raggiungeremo una sufficiente coerenza avremmo identificato il modello e potremo passare al report finale (pulsante "report").

	save radial spectrum	
Love waves: group-velocity spectrum	reporting include RVSR report	1C VS inv 2C inversion disp+RVSR 3C inversion

Come si nota, a fianco del pulsante "report" esiste l'opzione "*include RVSR*" che, evidentemente, include o meno l'RVSR nel report finale.

Questa possibilità è stata inserita in quanto in caso di variazioni laterali gli spettri di velocità di gruppo mostrano un valore "medio" che non risente molto di tali variazioni mentre l'RVSR ne risente molto (durante i nostri *workshops* e nei prossimi lavori divulgativi in preparazione ne mostriamo l'evidenza).

In questi casi (presenza di significative variazioni laterali) riuscire ad ottenere una buona coerenza di tutte e tre queste quantità (i due spettri di velocità e l'RVSR) è di fatto quindi impossibile ed è di conseguenza necessario escludere l'RVSR dalla modellazione (quindi dal report finale).

Esempio - caso studio

Un esempio di questo tipo di approccio è disponibile tra i casi studio presenti nella cartella "Documents": vedi file "*HoliSurface-CaseStudy1-Purgessimo.pdf*".

La rifrazione in *HoliSurface*®

Nei pannelli "*Disp+HVSR*" e "*HoliSurface*" è anche possibile considerare i tempi di arrivo delle onde rifratte P ed SH.

Per farlo basterà attivare l'opzione "refraction" (in alto a destra).

Nel momento in cui calcoleremo le curve di dispersione o gli spettri di velocità (pulsante "calculate") si visualizzeranno anche i tempi di arrivo delle onde rifratte P e SH (nonché delle rispettive onde dirette).

Per comodità di lettura e in accordo alle convenzioni adottate (le prime due tracce si riferiscono ad acquisizioni VF mentre la terza ad acquisizioni HF - vedi box "Assemblare i files delle onde di Rayleigh e Love") la visualizzazione di tutti i tempi sono distribuiti tra le tre tracce come mostrato (a titolo di esempio) nella seguente figura:

Le onde P rifratte sono cioè mostrate lungo la prima traccia, l'onda diretta P sulla seconda, mentre lungo la terza traccia (riferibile ad acquisizione HF) sono mostrate le onde S (quella diretta e quelle rifratte).

Va da sé che, considerato il fatto che abbiamo a che fare con un unico canale, tale tipo di dato risulta utile in situazioni stratigraficamente semplici e/o per valutare il coefficiente di Poisson di massima per capire quanto e se un certo sedimento è saturo d'acqua. Vedi ad esempio il caso studio#6 del **libro** "*Onde di Superficie in Geofisica Applicata*" e l'articolo "<u>Unconventional</u> <u>Optimized Surface Wave Acquisition and Analysis: Comparative Tests in a Perilagoon Area</u>" (Dal Moro et al., 2015).

Analisi spettrale e spettrogrammi

Dal pannello "*HoliSurface*" è possibile effettuare analisi spettrali (spettro di fase ed ampiezza) delle tracce caricate (pulsante "FFT").

Spettrogramma

Il pulsante "SP" (lungo la barra degli strumenti) consente invece di calcolare lo spettrogramma (spettro d'ampiezza in funzione del tempo).

Decimazione dati

Il pulsante "**decimate**" consente di ridurre (dimezzare) il campionamento del dato. Se abbiamo un dato acquisito ad esempio con un intervallo di campionamento di 0.5 msec, cliccando su "decimate" otterremo in dato con intervallo di campionamento di 1 msec. Cliccando nuovamente il campionamento passerà a 2 msec.

& processing").

Salva schermata/snapshot

Utilizzando l'icona rappresentante una piccola macchina fotografica (lungo la barra degli strumenti) è possibile salvare la schermata corrente.

Sono 4 i possibili formati: jpg, png, tiff e bmp.

Quelli che assicurano la migliore definizione (qualità) dell'immagine sono il png e il tiff.

7. Moduli di inversione automatica

Vi sono (almeno) tre modi di procedere all'inversione automatica in *HoliSurface®*. Come sempre, non vi è *il* modo corretto e solamente una buona conoscenza del metodo e delle problematiche consente di muoversi correttamente, anche in funzione del tipo di sito, dalla qualità del dato e degli obiettivi specifici.

Fondamentalmente esistono 3 possibili **inversioni (automatiche)** (ma si ricordi che la **modellazione diretta** è sempre il modo migliore di procedere e comunque rappresenta sempre un passo fondamentale prima di accedere a qualsiasi tipo di inversione automatica).

Alcuni aspetti fondamentali

Il metodo di gestire gli spettri di velocità si basa sulla generazione di sismogrammi sintetici tramite la *modal summation*.

I tempi di calcolo sono pesanti (consigliato quindi un PC ad alte prestazioni) e di conseguenza si consiglia di partire da un modello già significativo (*option#2*) considerando un modello *.mod* precedentemente identificato e salvato attraverso la modellazione diretta).

È **fondamentale** utilizzare uno *spettro di velocità* che contenga solamente informazioni/segnali riferibili alle onde di superficie.

Di conseguenza: effettuate una buona pulizia dei dati (esempio rimuovendo eventuali segnali rifratti) prima di calcolare e salvare lo spettro. Fissate una frequenza massima che non vada oltre la massima frequenza alla quale il segnale è riferibile alle onde di superficie. In altre parole, usate una frequenza <u>minima</u> e <u>massima</u> che comprenda il *range* di frequenze delle onde di superficie (che dipendono da sito a sito). Su terreni alluvionali queste sono tipicamente tra 4 e 30-40Hz, mentre su terreni più veloci (e meno attenuanti) possono salire sino anche a 60Hz e oltre.

La corretta determinazione dello spettro di velocità è chiaramente essenziale per la buona riuscita dell'inversione.

Il fatto che non sia necessario effettuare il *picking* non significa che il metodo rappresenti una "scorciatoia" che non richiede la comprensione di quanto si sta compiendo.

Expand search space (espandi lo spazio di ricerca)

Nei moduli di inversione automatica, attivando questa opzione al *software* sarà consentito cercare soluzioni al di fuori dallo *spazio di ricerca* (V_S e spessori massimi e minimi) indicato dall'utente. Questo allo scopo di consentire un miglior *fitting* nel caso l'utente non abbia correttamente parametrizzato lo spazio di ricerca. Se non siete utenti troppo esperti si suggerisce di attivare questa opzione.

Parametri di inversione raccomandati (in termini generali)

Parametro	Significato	Valori consigliati
Frequenza minima dello/degli spettro/i di velocità e frequenza massima dell'RVSR	Riguardo la massima frequenza dell'RVSR: frequenze troppo alte rischiano "inquinamenti" legati a variazioni laterali dei primissimi decimetri del solo; Riguardo la minima frequenza dello/degli spettro/i di velocità: frequenze molto basse possono essere usate solamente nel caso l'offset e la sorgente utilizzati siano adeguati in quel senso. È buona norma tagliare frequenze per le quali non si evidenzi più un chiaro segnale di coerenza dello spettro (vedi ad esempio il caso studio di Torviscosa).	Impossibile dare valori assoluti (che dipendono dal sito) ma indicativamente: 2-6 Hz come frequenza minima 20-25 Hz come frequenza massima RVSR
<i>Number of layers</i> (numero di strati)	Numero di strati utilizzati per la ricostruzione del profilo verticale. Si consideri che è <u>altamente</u> <u>raccomandato</u> effettuare l'inversione automatica a partire da un modello di partenza precedente identificato tramite "modellazione diretta" (<i>option</i> #2).	Il metodo <i>HoliSurface®</i> è in grado di definire maggiori dettagli stratigrafici rispetto i metodi MASW e HVSR. Un numero di strati adeguato deve essere quindi considerato: normalmente 6-8 strati ma, in caso di situazioni estremamente complesse, anche fino a 10.
K factor	Valore del fattore K che regola il rapporto tra Vs e Qs: Qs=Vs/K	Valori suggeriti: 9 quando si lavora su sedimenti inconsolidati; 12 (o più, anche molto di più) su roccia. Vedi anche "Max Poisson and K factor variability"
Max Poisson and K factor variability	Valore che regola la variabilità dei valori del rapporto di Poisson e del fattore K inizialmente adottati.	30-50%
<i>Search space</i> (spazio di ricerca)	Limiti dei valori che ciascuna variabile (spessore e V _S di ciascun strato) possono assumere	Una volta fissato il numero di strati, <i>HoliSurface®</i> propone dei valori (i valori suggeriti sono piuttosto ampi) che l'utente <u>deve</u> modificare sulla base alle conoscenze geologiche dell'area.

Number of individuals/models (Numero di individui/modelli)	Numero di modelli che costituiscono la popolazione che evolverà verso soluzioni migliori. Maggiore è il numero di strati, maggiore il numero di modelli da considerare.	Sconsigliato scendere sotto una cinquantina (se si utilizzano 10 strati tale numero è bene venga incrementato)
Number of generations (Numero di generazioni)	Numero di generazioni al passare delle quali vengono esplorati modelli via via migliori	Sconsigliato scendere sotto un valore di 70
Computational detail	Grado di "perfezione" della soluzione delle curve di dispersione (ingrediente base dell'intero sistema)	Per situazioni stratigrafiche normali e non estreme " <i>reasonable</i> " risulta assolutamente sufficiente. Situazioni <u>altamente</u> complesse (rapide e molteplici variazioni di V _S) possono raramente richiedere un dettaglio " <i>good</i> " (o molto raramente " <i>very high</i> "). Si valuti la cosa con un po' di "modellazione diretta". Tale parametro influenza significativamente i tempi di calcolo.

7.1 Pannello inversione a singola componente ("Single-Comp Inversion")

Procedura di inversione automatica che, in sintesi, si svolge secondo i passi di seguito sintetizzati. È sicuramente quella da preferire nel caso non si abbia perfetta padronanza di quanto si sta facendo.

1. Caricare lo spettro di velocità precedentemente salvato; in questo caso il file è "ZVF-70m-3-33Hz.mat" (cioè si tratta della componente verticale di un'acquisizione fatta con *offset* 70 m, nell'intervallo 3-33 Hz - vedi *snapshots* qui di seguito)

2. Fissare lo *spazio di ricerca* (a partire da un modello di partenza precedentemente identificato e salvato)

3. Fissare tutti i parametri di inversione. Cliccando poi il pulsante "RUN" si lancerà l'inversione dello spettro di velocità caricato.

Una volta lanciata l'inversione apparirà una "barra di stato" con indicato il tempo trascorso e quello rimanente:

30% Avanzamento	Inversione	_ 🗆 🗙
Per interrom	oere cliccare la "×"	
		30%
Tempo trascorso:	0:00:12	
C 23 2 3	0.00.00	

La procedura di inversione deve ritenersi conclusa allorché comparirà la finestra:

FINE PROCEDURA INVERSIONE
Risultati salvati nella cartella "C:\winMASW\output\"
ОК

Al termine del processo di inversione saranno creati una serie di *output* (salvati automaticamente nella *cartella di output* scelta). Tra questi files si noterà il file di report con estensione *html* che si aprirà automaticamente nel vostro *browser*.

Critical depth

Nei grafici che riportano il profilo V_S in funzione della profondità viene anche indicata una "*Critical Depth*" (profondità critica).

Questa indica la profondità oltre la quale il valore delle V_S determinate non può essere più considerata sufficientemente vincolata e chiaramente dipende dall'offset adottato in fase di acquisizione.

In pratica (e in un'ottica necessariamente di tipo semi-quantitativa), nell'ipotesi abbiate svolto correttamente tutte le operazioni, il profilo V_S determinabile tramite inversioni automatiche *HoliSurface®* è da considerare affidabile sino ad una profondità pari a *circa* 2/3 dell'*offset* considerato. Oltre tale profondità e sino ad una profondità pari all'*offset* utilizzato, i valori di V_S devono invece da intendersi come "approssimativi" in relazione al preciso valore di V_S ma di un certo significato in relazione all'identificazione di un eventuale forte salto di V_S.

Un esempio chiarirà il concetto.

Ammettiamo di avere fatto un'acquisizione *HoliSurface[®]* con un offset di 50 m in un sito in cui una soffice copertura sedimentaria di 40m sia presente al di sopra di un *bedrock* massiccio.

I due terzi di 50 m sono 33 m.

Il risultato finale di questa situazione sarà che tramite analisi della sola acquisizione *HoliSurface®* (attiva) saremo in grado di "sentire" la presenza del *bedrock* (e ne potremo identificare l'approssimativa profondità), ma non potremo definirne invece con precisione il valore della V_S (cosa che potremo invece fare affiancando all'analisi *HoliSurface®* anche una misura/analisi HVSR).

7.2 Modulo 2C inversion (inversione congiunta di 2 componenti)

Modulo per l'inversione congiunta degli spettri di velocità di gruppo 2 componenti scelte tra le ZVF, RVF, REX, ZEX e THF.

Questo modulo è finalizzato all'inversione congiunta di due spettri di velocità di gruppo precedentemente salvati (con i medesimi parametri).

Approccio molto utile per ricostruzioni della porzione più superficiale del terreno (indicativamente sino circa metà dell'offset adottato) ad esempio a fini geotecnici.

Qui di seguito un esempio di inversione congiunta ZVF+RVF (indi inversione congiunta delle velocità di gruppo rispetto tanto la componente verticale che radiale dell'onda di Rayleigh).

Sequenza delle operazioni:

1. Caricare i 2 spettri di velocità precedentemente salvati

2. Settare lo spazio di ricerca a partire da un modello precedentemente valutato/modellato nel pannello di caricamento, pulizia e *modelling* diretto dei dati.

3. Fissare il numero di modelli e generazioni da considerare (il tempo necessario per effettuare l'inversione dipenderà da questi 2 valori e dalle capacità del vostro PC - CPU in particolare [vedi raccomandazioni sui "requisiti di sistema")

4. Fissare la profondità sino alla quale vogliamo mostrare i risultati, ricorda che - se i dati sono stati presi e pre-processati correttamente - per questo genere di inversione i valori di V_s sono affidabili indicativamente sino circa metà o 2/3 dell'*offset*.

5. Lanciare l'inversione (RUN).

Qui di seguito un esempio di output

Riassunto dati considerati (componenti Z e R).

HoliSurface[®]

Distribuzione dei modelli nello spazio bi-obiettivo (buona la simmetria).

Statistica sui valori di Vs30 dei modelli del fronte di Pareto.

7.3 Modulo 3-obs Inversion (inversione a tre observables)

In questo modulo si invertono automaticamente in modo congiunto le componenti radiale e verticale delle onde di Rayleigh, congiuntamente con l'RVSR. Le raccomandazioni/cautele sono evidentemente le stesse di quelle del modulo "*Joint Disp. - RVSR*".

Schermata con i tre "oggetti" considerati in questa inversione.

7.4 Un esempio di inversione congiunta di 3 *observables* considerando solo dati attivi [Z + R + RPM]

In questa sezione prendiamo in considerazione il caricamento, il pre-processing e l'inversione congiunta (automatica) di dati puramente attivi: le due componenti dell'onda di Rayleigh [es. gli spettri delle velocità di gruppo delle componenti Z e R] e la curva RPM. Ovviamente assumiamo che i dati siano stati acquisiti correttamente [la curva RPM è corretta solo se il nostro *sistema di acquisizione* è stato <u>esplicitamente</u> testato rispetto questi aspetti – vedi anche il libro pubblicato per la Flaccovio nel 2019].

step#1: caricamento e pulizia dei dati

Dal pannello principale, clicchiamo il pulsante "HoliSurface" e apriamo la seguente schermata:

월 월 ∑ SK R T V FFF 월 출₩V X 및 강직적 역 영 영 영 영				
data, spectral ratio and RPM	ge	eneral set	inge	
select data	0 10	iterence d	çe.	5
ectivale.	refract	tion		
00 5000	-	12121	107	
Carcer From HS www.holisurface.com	_низная	om Surface	Wayes	
MOTES MOTES	0.3 %	la tatlor		
renow data	_H/SR.6	ions body w	1774	
thew souther we	S Q	6 Pas	an Qp	thk (ma
RPM snatylis Z (vertical component)	0 6	6 0	6 6	0.3
540			5 10	0.5
RPM cane				0.5
N ANOYS SOUTCE 2	~ 2		0 28	
23	0 3	0	15 35	2
Pasce Motor (transversal component) s	0 3	6 0.	15 36	3
	0 4	15 0	5 45	4
	0 3	0 0	3 32	5
1 lode done toour	n [3	0 0	5 10	
D Time to Histophic (ed.) More: Add Ad				<u> </u>
group-velocity spectra (vertical & radial components)			9 91	
				20
2 And A Man	8 6	0 0	2 00	100
12	50 13	20 0	2 120	
		mode	-	
	plaad	show M	SR 1	948
Efficient Joint	k N	actor [10 30	ely .
Analysis of Surface				
Waves and Introduction	refere	ince frequi	ncy (Hz):	6
Introduction to Vinzion Analysis:	gh wave s	RHIECE	VI ~	0
Beyond the Clichés				
Ceta Ceta Ceta Ceta Ceta Ceta Ceta Ceta	t reason	nable	~ 512	2
E Contraction of the second seco	automatic	Q	verbose	. L
E Springer	numbe	er of mod	s I	
	Vel Speci	ia, RPM	RVSR	v
		1		
isine // spectrum	recresh		compu	
reporting				
Reyleigh waves: group-velocity spectra & RVSR 250 nhow vrincity Love waves: group-velocity spectrum max depth protocol RVSR	1 obs i	inv	2C invers	ion
show periods Ste Response	dsp+Hv	/SR	-obs inver	sion

Carichiamo e puliamo i dati (pulsanti all'interno del gruppo "select data" – *attivazione*, spostamento dei punti del poligono, *selezione*):

step#2: computo degli spettri delle velocità di gruppo [per componenti Z e R]

Ora possiamo calcolare gli spettri delle velocità di gruppo delle due componenti che intendiamo considerare (in questo caso le componenti Z e R, cioè solo le onde di Rayleigh) [pulsante "**Rayleigh waves: group-velocity spectra & RVSR**" posto in basso al centro del pannello].

Considera che:

 È importante scegliere adeguatamente i range di frequenza e velocità più indicati per quel sito/dataset [ciò è possibile considerando attentamente gli aspetti teorici dell'analisi della dispersione];

2) In questo caso non lavoreremo con la curva RVSR [vedi passaggio successivo].

step#3: computo della curva RPM

Clicchiamo poi il pulsante "RPM curve" nella sezione "RPM analysis group" più o meno al centro del pannello e otteniamo il seguente risultato:

step#4: alcuni modelli preliminari

I 3 *observables* che intendiamo analizzare (ed invertire) sono ora pronti e possiamo fare un po' di modellazione avanzata (cioè modifichiamo i valori di V_S e degli spessori sulla parte destra del pannello) in modo da ottenere un modello che più si avvicina ai dati:

Come puoi vedere, i dati sintetici (cioè il modello) non sono molto lontani dai dati di campagna ma non sono ancora *perfetti*. Per migliorare la soluzione (cioè il modello di sottosuolo), clicchiamo il pulsante "3-obs inversion" (nell'angolo in basso a destra) e apriamo il pannello di inversione automatica a 3 *observables*.

step#5: inversione congiunta automatica dei 3 observables

Dobbiamo ora impostare (con criterio e coscienza) i parametri di inversione (che dipendono da diversi aspetti – vedere la sezione del manuale dedicata a questo) e lanciare il processo di inversione (pulsante "RUN"). Di seguito un esempio di risultato ottenuto per questo *dataset* (tutte le figure e il report vengono salvati automaticamente nella cartella di output):

"Quality is never an accident; it is always the result of intelligent effort."

John Ruskin

8. Alcune raccomandazioni e suggerimenti

Suggerimento#1: numero di modelli e generazioni

Il numero di individui e generazioni da adottare deve essere proporzionale allo sforzo richiesto all'algoritmo per identificare una buona soluzione. Tali parametri devono quindi andare di pari passo col numero di strati adottato (più strati = maggior grado di libertà del sistema = maggiore sforzo computazionale) e all'ampiezza dello "spazio dei parametri".

Lo spazio di ricerca da adottare va fissato dall'utente sulla base delle informazioni geologiche e stratigrafiche note a priori e conoscendo quali sono le V_S per le più comuni tipologie litologiche.

Nel caso sia grossomodo nota la stratigrafia di un sito (e quindi gli spessori degli strati non siano ignoti), si possono fissare dei valori dello spessore vicini a quelli che sappiamo essere presenti nell'area e lasciare più ampi limiti per la Vs. In questo modo si riduce il grado di libertà del sistema e si può ridurre il numero di individui e generazioni da adottare.

Suggerimento#2: spazio di ricerca

Lo spazio di ricerca va fissato sulla base delle conoscenze geologiche del sito. Se queste sono limitate è necessario fissare uno spazio di ricerca ampio e, contestualmente, un adeguato numero di individui e generazioni.

Attivando l'opzione "*expand search space*" si consente al programma di forzare la ricerca del modello migliore al di fuori dei limiti indicati dall'utente (scelta consigliata in caso di utenti non esperti).

Suggerimento#3: prendere confidenza col metodo (potenzialità e limiti)

Caricate un *dataset* e calcolatene gli spettri di velocità. Tentate quindi di riprodurre il dato osservato introducendo dei modelli nella sezione "modellazione diretta". Provate a modificare un parametro alla volta e notate come cambiano le curve di dispersione calcolate.

Che succede se si aumenta la profondità di uno strato veloce? Che accade inserendo un'inversione di velocità in profondità? Qual è il rapporto tra Vs dello strato, la sua profondità e la velocità di fase dell'onda osservata in superficie?

Esercizi (vedi la "modellazione diretta") e riflessioni di questo tipo sono determinanti per acquisire familiarità col metodo.

Suggerimento#4: numero di strati da utilizzare

Rispetto le velocità di fase (metodi MASW, ReMi, ESAC), le velocità <u>di gruppo</u> risultano più sensibili a variazioni delle V_S del sottosuolo.

Questo è allo stesso tempo una splendida opportunità e un "problema": *opportunità* in quanto con una traccia sola riusciamo ad avere a disposizione un "oggetto" (spettro di velocità) grazie al quale possiamo ricavare rilavanti notizie sul sottosuolo; "*problema*" in quanto tale sensibilità ha come contro-altare la necessità di uno sforzo computazionale piuttosto rilevante (motivo per cui è importante lavorare con computer dalle <u>ottime</u> caratteristiche – vedi requisiti di sistema).

Ad ogni modo <u>mai</u> utilizzare meno di 4 strati (nemmeno quando credete di avere a che fare con un modello geologico a 2 strati): anche il modello apparentemente più banale è dal punto di vista sismico certamente più articolato.

9. Analisi, modellazione e inversione dell'HVSR

L'HVSR (il rapporto spettrale tra la componente orizzontale e quella verticale dei microtremori) è in uso in sismologia indicativamente dalla fine degli anni '60 (vedi ad esempio Mark and Sutton, 1975). Negli anni ottanta, in Giappone, sono stati poi svolti diversi studi sul suo utilizzo in relazione alla valutazione del rischio sismico (vedi studi di Nakamura riportati tra i riferimenti bibliografici). Di fatto non è mai stata dimostrata la relazione tra amplificazione e curva HVSR. Considerazioni teoriche e osservazioni sperimentali non supportano infatti l'idea (purtroppo molto popolare) che la curva HVSR rappresenti, *sic et simpliciter*, la curva di amplificazione.

Diversi studi hanno infatti dimostrato che (vedi ad esempio Perron et al., 2018 e riferimenti bibliografici in esso contenuti) l'amplificazione effettivamente registrata durante un terremoto si discosta anche di molto rispetto la curva HVSR (vedi ad esempio dati riportati nella seguente Figura).

Confronto tra curva HVSR e curva di amplificazione reale (da analisi SSR – *Standard Spectral Ratio*) in caso di evento sismico (da Perron et al., 2018). Si noti la profonda differenza tra curva HVSR ed amplificazione effettivamente misurata.

Se quindi, unicamente a dati riguardanti la velocità di propagazione delle onde di superficie, l'HVSR rappresenta un valido sussidio a stimare le V_S delle parti più profonde (e.g. Arai & Tokimastu, 2005; Dal Moro, 2015), essa non deve essere intesa come stima dell'amplificazione di sito.

Analisi: determinazione della curva HVSR

I parametri da settare sono di chiara lettura (vedi anche SESAME, 2005): se non siete sicuri del valore e peso dei parametri coinvolti è bene frequentare qualche *workshop*, suggerimento che naturalmente vale per qualsiasi metodologia si utilizzi.

Formato SAF

Il formato SAF (*SESAME* ASCII data Format) è un normalissimo file ASCII apribile con qualsiasi *word editor*.

I software *winMASW*[®] e *HoliSurface*[®] assumono di default che le 3 colonne rappresentino rispettivamente:

prima colonna: componente verticale *seconda colonna*: componente NS *terza colonna*: componente EW

ma all'atto del caricamento dei dati è possibile specificare un diverso formato.

Inoltre: Sono 2 i parametri letti dall'*header*: la frequenza di campionamento ("SAMP_FREQ =") la data ("START_TIME = ")

Se ottenete errori di lettura nel file SAF fornito dal vostro strumento di campagna si raccomanda di correggere le *header lines* e le colonne in modo che esse ottemperino al formato qui sopra ricordato.

Come intuibile è *assolutamente necessario* avere la frequenza di campionamento ("SAMP_FREQ =").

D'altra parte la data ("START_TIME = ") non è un parametro necessario e in caso di sua assenza verrà visualizzato un semplice "*warning*" che consentirà di procedere comunque con le analisi.

Helfsurface ${}^{\oplus}$ & with MASW ${}^{\oplus}$ - Herizental-to-Vertical Spectra State \mathcal{A} (\mathfrak{S}) \mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S}) \mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak{S}) \mathfrak{S}) \mathfrak{S}) \mathfrak{S}) \mathfrak{S} (\mathfrak{S}) \mathfrak	ni Sata (±155). ● ③ ③ [11] [] ▶ [3]]	×
show data reset step#1 (optional) - decimate 64 xz v resumption	2017-11-11_12-45-cascata-AlmostNOwater-inizia_con_4_elicotteri.seg2 (sampling: 250Hz, length: 19.9999min)	open working folder show location
stipp2 - INV computation memory events limit A + diskas area 20 volto-kite(h) Min. freq.: 0.5Hz 31 straftude threahold test removal 15 anglube threahold test removal 155. stechal strafting (hirrydaf wrwitzwa)	(a) index (Fe	field rotes
Company Company Company Continuity Serv robo show 30 motion directivity analysis hequancies in highlight 11 10 110 Hz compute	Coshie Prophy Proving Pro	your comments default axes
stere-optical11 sere HV9H as it is sere hV7 hors 0.5 to 60 m2 mere HV carve (as it in) stere - optical2 packing HV curve pick HV curve save picked HV	Cruchtine This IC drawport (K) My Persport (K) Vetrook for septore	
galdk analysis (MVAR) 200 mergy Vs (Nb) 200 mergy Vs (Nb) 201 derga Vs (Nb) 202 dergh Vs (Nb) 203 dergh Vs (Nb) 203 dergh Vs (Nb) 203 dergh Vs (Nb) 203 dergh Vs (Nb) 204 dergh Vs dergh Vs (Nb) 205 dergh Vs (Nb) 206 dergh Vs (Nb)	<	
dam compute highlight a frequency 3 Hz drawhighlight 3 Hz drectivity over time true EG	Open Carcel	saved HV curve

Apri/seleziona il file (formato seg2)

Definisci la sequenza dei canali che contengono, nell'ordine, la componente UD, NS e EW

Definisci l'unità di misura dei dati (nel caso tu stia utilizzando in nostro sistema di acquisizione *HoliSurface*[®] seguendo correttamente le procedure di acquisizione, seleziona l'opzione evidenziata nello snapshot sopra riportato e otterrai i dati in mm/s).

Data Resampling

Tool per il ri-campionamento e il salvataggio di dati H/V.

Dalla schermata principale di *winMASW®* e *HoliSurface®* è disponibile uno strumento ("*Data Resampling*"). Con questo *tool* è possibile caricare, decimare e salvare un file (vedi box "campionamenti e ri-campionamenti" per comprenderne il peso). Si noti comunque che è possibile ricampionare un dataset (ma senza salvare il dato ricampionato) anche direttamente all'interno dello strumento di analisi H/V ("*compute H/V*").

Protezione del geofono triassiale dall'azione diretta del vento

Pulsante "show location"

Chi possiede una terna dotata di GPS può ora visualizzare l'ubicazione della misura su *Google Earth* (che chiaramente deve essere stato preliminarmente installato) con un semplice *click*.

I dati geografici sono quelli indicati nel file SAF (secondo appunto il formato SAF) nei campi EVT_X (longitudine), EVT_Y (latitudine) e EVT_Z (altitudine)

Esempio di dati geografici nel file SAF:

EVT_X = 10.2 EVT_Y = 50.1 EVT_Z = 0

Nel caso tali dati siano presenti viene attivato il pulsante "show location" ed è possibile quindi ottenere in modo rapido ed automatico una schermata come quella qui sotto riportata

Per sapere se la propria terna (e il relativo software di acquisizione) sia dotata di questa possibilità si consulti il produttore della stessa.

Campionamenti e ri-campionamenti

Quali sono le frequenze di maggior interesse dal punto di vista geologico - ingegneristico? Grossomodo andiamo dagli 0.5 ai 20 Hz.

Poiché per individuare una certa frequenza è necessario campionare ad almeno il doppio di tale frequenza, andrebbe da sé che campionando un segnale ad almeno 40 Hz dovremmo riuscire a portarci a casa un dato sufficientemente definito per i principali scopi di carattere geologico.

L'importante, allo scopo di non aumentare inutilmente i tempi di calcolo, è analizzare dei dati ad una frequenza non superiore ai 128 Hz.

<u>In sintesi</u>, quello che si potrebbe suggerire è: utilizzare in campagna un campionamento di 256 Hz e procedere poi ad un ri-campionamento a 64 o 128 Hz in fase di analisi (*"step#1 – optional"*). E, ad ogni modo, risulta completamente inutile (dati gli scopi delle più comuni indagini geologiche/geofisiche) analizzare dati ad una frequenza di campionamento superiore ai 128 Hz (anzi consigliamo di ri-campionare 64Hz - che consente comunque di vedere sino a 32 Hz).

Movimento del suolo (della particella)

Se viene selezionata l'opzione "*show particle motion (of the original data)*" si otterranno i movimenti del suolo lungo le tre sezioni *verticale-NS*, *verticale-EW* ed *orizzontale* (NS-EW) (chiaramente dei dati originali).

L'utente può a questo punto selezionare specifici eventi (segnali) da rimuovere. Per farlo si deve cliccare il pulsante "start selection" ed usare il pulsante sinistro del mouse per definire ciascun punto (si consideri che ogni eventi è definite da un punto di inizio ed uno di fine). Per selezionare l'ultimo punto si userà il tasto destro. Nell'esempio sotto riportato vi sono 3 eventi selezionati (per essere rimossi). Tali eventi sono chiaramente definiti da 6 punti. I primi 5 devono essere identificati usando il pulsante sinistro, l'ultimo (in questo caso quasi alla fine del dataset) con il pulsante destro.

Se la selezione ci soddisferà cliccheremo a questo punto il pulsante "accept" per tornare alla schermata principale, altrimenti potremo effettuare una nuova selezione resettando la precedente (pulsante "reset").

Rimozione <u>automatica</u> di eventi con ampiezza superiore ad una soglia (*amplitude threshold*) fissata dall'utente

Tra i parametri da settare per l'elaborazione, vi è anche la soglia di ampiezza (*amplitude threshold*) utilizzata per rimuovere automaticamente tutte quelle finestre all'interno delle quali vi sono eventi con ampiezza.

In sintesi viene calcolata l'ampiezza *root mean square* delle tracce e viene poi moltiplicata per la *amplitude threshold* fissata dall'utente.

Se una finestra contiene un evento di ampiezza maggiore, tale finestra viene eliminata dalle analisi.

Chiaramente, minore sarà quel valore più dati/finestre saranno rimosse.

Con il pulsante "*test removal*" si andrà a verificare come agisce tale pulizia automatica e potremo aumentare o diminuire il grado di pulizia prima di procedere con il computo finale (fatto spuntando l'opzione "*full output*"). Qui sotto un esempio di dati prima e dopo la rimozione delle finestre in cui

Se la terna utilizzata includeva anche un GPS e il file SAF ottenuto contiene le indicazioni geografiche del sito (campi "EVT_X", "EVT_Y" e "EVT_Z") sarà possibile (pulsante "show location") ottenere l'automatica visualizzazione del sito su *Google Earth* (che deve chiaramente essere stato precedentemente installato).

Quando, al variare dei parametri di elaborazione, si sarà ottenuta una buona curva HVSR, a quel punto si potrà effettuare il computo "completo" di tutto quello che è computabile. Per farlo basterà attivare l'opzione "full output". Come risultato nella cartella di lavoro saranno salvati una serie di output (immagini e testo). Il principale è un file HTML (un normalissimo file in formato web gestibile con qualsiasi browser): cliccandolo si aprirà il report delle analisi.

I puntini rossi (vedi schermata sopra riportata) indicano valori HVSR inferiori all'unità (*possibile* indice di inversioni di velocità).

Tra i vari output anche la "continuità" dell'HVSR durante l'acquisizione (in questo caso di poco meno di 18min), cioè il valore dell'HVSR su ciascuna finestra considerata:

La continuità viene presentata sia nella classica visualizzazione bidimensionale (sulla sinistra) che tridimensionale (sulla destra).

Una serie di strumenti è come sempre presente nella barra. È ad esempio possibile visualizzare la scala dei colori (che in questo caso rappresenta proprio i valori del rapporto spettrale H/V - vedi immagine qui sotto).

HoliSurface®

Spettri di ampiezza delle singole componenti in funzione del tempo.

Frequenza minima della curva HVSR: cosa fare se voglio visualizzare le frequenze inferiori a 0.5 Hz?

In ossequio alle direttive SESAME, la frequenza minima visualizzabile dipende dal valore della finestra di analisi. Essendo richiesti almeno 10 cicli, la frequenza minima determinabile in modo robusto è pari quindi a $f=10 / I_w$ (10 diviso la lunghezza della finestra in secondi).

Se si desidera scendere ad esempio sino a 0.1 Hz, è necessario fissare la finestra di analisi a 100 secondi e scrivere 0.1 nel campo relativo alla frequenza minima nel gruppo "**save - option#1: save HVSR as it is**"

Report HVSR e criteri SESAME

Al termine del computo della curva HVSR viene anche fornito un *report* (file .html) che riassume tutti i parametri utilizzati e le risultanze dell'analisi (il file è automaticamente salvato nella cartella di lavoro).

Vengono anche valutati i criteri SESAME inerenti l'affidabilità della curva H/V e del suo picco. Le analisi rispetto i criteri SESAME sono svolte considerando i dati nell'intervallo 0.5-15 Hz (ambito di interesse ingegneristico) ma tale *range* può (e in alcuni casi *deve*) essere modificato tramite il pulsante f_c situato nella barra degli strumenti in alto. La complessità di questo genere di valutazioni è tale da rendere necessario uno sguardo "critico" da parte dell'utente che deve aver bene presente l'argomento. È quindi necessario che l'utente abbia ben assimilato quanto riportato nelle linee guida SESAME (considerate come prerequisito minimo) e in tutta la successiva letteratura (vedi libro Flaccovio 2019).

Tra le altre cose l'output riferisce i seguenti parametri:

In the following the results considering the data in the 0.5-15Hz frequency range Peak frequency (Hz): 3.2 (±0.3) Peak HVSR value: 5.5 (±0.5)

Alcune raccomandazioni a proposito:

- non scambiare i criteri SESAME per la Bibbia

- cambiare i parametri di elaborazione (lunghezza finestra di analisi, rimozione transienti, ecc.) necessariamente porta a modifiche che possono riflettersi anche nei criteri SESAME.

- il criterio#5 (tra quelli "Criteria for a clear H/V peak") è tra i più restrittivi.

Al di là della sua rigorosa formulazione, si valuti quindi il dato con buon senso (sempre necessario per qualsiasi metodo).

- di *default* i criteri sono calcolati nell'intervallo 0.5-15Hz (solitamente quello di maggior interesse ingegneristico), ma tale intervallo può essere modificato con il pulsante *fc* presente nella *barra degli strumenti*.

- attenzione che possibili picchi antropici/industriali (AA.VV. - Report Progetto SESAME) 2005; Dal Moro, 2012; 2014) non possono essere riconosciuti automaticamente ma non devono essere considerati a fini geologici.

www.holisurface.com

qualsiasi dei numerosi formati possibili.

("working folder") ma può essere anche salvata manualmente dall'utente in un

Opzione "HOLI3C" (equalizzazione dei nostri geofoni da 2 e 4.5 Hz)

Se hai acquisito i dati utilizzando uno dei nostri geofoni a tre componenti [geofono HOLI3C], attivando l'opzione HOLI3C, si otterrà l'equalizzazione delle tracce con conseguente recupero alla loro reale ampiezza) delle bassissime frequenze.

Analisi HVSR senza equalizzazione delle tracce (opzione HOLI3C non attivata)

Attivazione dell'opzione HOLI3C (dalla release 2018 è possibile scegliere tra 2 opzioni a seconda del triassiale HOLI acquistato).

Analisi HVSR con equalizzazione delle tracce (opzione HOLI3C-2Hz attivata): si noti il recupero delle vere ampiezze

Identificazione dei picchi e criteri SESAME: le frequenze fc

Le due fasi delle analisi HVSR

In una **prima fase** (cliccando su "compute" senza avere attivato alcuna particolare opzione) si fa il calcolo della sola curva HVSR in modo tale comprendere quali possano essere i parametri (*smoothing*, lunghezza della finestra ecc.) più indicati per il *dataset* di volta in volta considerato.

In questa fase vengono anche evidenziate due barre rosse verticali che indicano la frequenza minima e massima all'interno del quale sono calcolati i criteri SESAME:

È cura dell'utente modificare tali limiti (pulsante "*fc*" sulla barra degli strumenti) in modo da includere il picco che si intende valutare rispetto ai criteri SESAME.

Nella **seconda fase**, una volta modificati i limiti e attivato l'opzione "full output" (in modo da effettuare tutte le possibili analisi di direttività, continuità ecc.), otterremo un grafico come il seguente (in cui ora i limiti sono indicati in modo più "discreto" e non vengono evidenziati i valori inferiori all'unità):

Infatti se in una curva esistono più picchi, questi andranno valutati (rispetto i criteri SESAME) singolarmente/separatamente (vedi il "pacchetto" *winMASW-HVSR-SESAME.rar* presente nella cartella "Documents" all'interno della cartella di installazione di *winMASW*[®] e di *HoliSurface*[®] e quanto indicato durante i nostri *workshops* e nel libro in uscita per la Flaccovio ad ottobre 2018 – titolo provvisorio "Acquisizione e analisi di dati sismici: onde di superficie e dati vibrazionali" – autore Dal Moro G.).

Quindi (in caso di più picchi) i criteri SESAME vanno considerati rispetto ad ogni picco (dovendo lanciare il computo per ogni singolo picco - dopo avere chiaramente modificato i limiti *fc* in modo da includere il picco che si desidera di volta in volta considerare).

SESAME o non SESAME?

Di *default*, il software calcola i criteri SESAME nel range di frequenze indicato (vedi precedenti pagine e l'articolo Dal Moro & Panza (2022). Si ottiene dunque una schermata analoga alla seguente:

Nel caso non desideri che venga riportato il computo dei criteri SESAME e l'indicazione del "picco", è possibile disabilitare il computo dei criteri SESAME semplicemente "annullando" (inserire valori nulli) i due valori *fc*. In questo caso otterrai dunque una schermata come quella riportata qui di seguito.

Inserisci i tuoi commenti

È anche possibile inserire dei commenti ai dati e alle analisi (vedi il *box* grigio "your comments" alla destra degli spettri di ampiezza).

I commenti saranno automaticamente riportati in calce al rapportino finale che si ottiene computando l'HVSR dopo aver attivato l'opzione "full output".

Salvare la curva H/V

La curva HVSR è salvata automaticamente (nella cartella di lavoro) al termine delle analisi ma è anche possibile salvarla manualmente.

Per tale operazione vi sono 2 opzioni:

"option#1 - save HVSR as it is" "option#2 – picking H/V curve"

Nel primo caso si salverà la curva H/V calcolata (visibile nella parte inferiore della schermata) nell'intervallo di frequenze indicato.

Nel secondo caso si potrà fare un *picking* della curva H/V avendo quindi la possibilità di eliminare eventuali picchi dovuti ad "artefatti" di natura industriale non legati a segnali di natura litologica.

Inoltre, se attuiamo lo strumento di gestione/attenuazione/rimozione automatica dei segnali industriali (vedi la sezione "Rimozione automatica di segnali industriali" nelle successive pagine), alla fine dell'operazione viene salvata la curva mondata dai segnali industriali (sulla base dei parametri indicati dall'utente!).

Ascolta (e salva) i tuoi microtremori

Dal modulo HVSR (pulsante ► sulla barra degli strumenti) è anche possibile ascoltare i propri microtremori. Cliccando tale pulsante è possibile scegliere se ascoltare i microtremori in forma di file audio [opzione "**simple**"] o mostrare (vedi successiva

sezione) le animazioni *time lapse* degli spettrogrammi [opzione "**visualization** [longer]"].

Sia per questioni di tempi di riproduzione che di frequenze a cui l'orecchio umano è sensibile, i dati sono riprodotti ad una velocità (frequenza) circa 10 volte superiore rispetto quella reale (ciò significa che un *dataset* di 10 minuti viene riprodotto in 1 minuto).

-	HoliSurface® & wi	nMASW	B - Horizontal-to-Vertical Spect	tral Ratio (HVSR)		
	🚔 S2S 🛃 🔞	fc 🖳	🖑 🔍 🔍 📰 🥔 🥏 🧳	12	м	▶ 纲	
	show current data	reset	multiple HVSR batch process	sing			
			tional) decimate				<u> </u>

Solo una curiosità? Non solo... (vieni ad uno dei nostri incontri per scoprire anche quest'aspetto)

L'audio è anche automaticamente salvato (come **file .flac**) nella cartella di lavoro e potrà essere suonato con qualsiasi lettore di files audio.

Per apprezzare appieno il "fenomeno" (in un certo senso la voce di *Madre Terra*), si suggerisce l'ascolto con un buon impianto audio o, meglio ancora, in cuffia.

La stessa cosa è possibile nel pannello ESAC (pulsante "play & save audio data").

Time Lapse dei dati nel dominio delle frequenze (spettrogrammi *time lapse*)

Dal modulo HVSR (pulsante ► sulla barra degli strumenti) è anche possibile visualizzare un *time lapse* degli spettrogrammi delle tre componenti e dell'HVSR.

Cliccando tale pulsante è possibile scegliere se ascoltare i microtremori in forma di file audio (vedi precedente sezione - opzione "**simple**") o mostrare appunto le animazioni *time lapse* degli spettrogrammi [opzione "**visualization [longer]**"] (utile, ad esempio, se vogliamo verificare meglio la persistenza o l'apparizione/scomparsa di segnali che riteniamo essere di carattere industriale).

Il valore minimo e massimo del *range* di frequenze visualizzato sono i valori specificati come frequenza minima e massima dell'HVSR computato (gruppo "**save – option#1**").

Nel caso sia anche selezionata l'opzione "time-lapse animation" (nel gruppo "step#2"), il video sarà salvato nella cartella di lavoro corrente come **file mp4**.

Un esempio di video nel caso di dati caratterizzati da un segnale di natura industriale (che appare e scompare) è riportato al seguente *link*: <u>https://www.youtube.com/watch?v=NW1e q09g-c</u>

Tale esempio è tratto dai dall'articolo "On the identification of industrial components in the Horizontal-to-Vertical Spectral Ratio (HVSR) from microtremors" (Dal Moro, 2020).

Componenti industriali

Sono anche mostrati gli spettri di ampiezza delle tre componenti con scale delle frequenze lineari (scala di ampiezza sia log che lineare) e le coerenze tra le varie coppie di sensori (EW versus NS, EW versus UD e NS versus UD).

In questo modo è possibile porre meglio in evidenza possibili componenti industriali. I dettagli di come vadano utilizzati questi strumenti sono riportati nel libro pubblicato per la Flaccovio nel 2019 e nell'articolo "*On the identification of industrial components in the Horizontal-to-Vertical Spectral Ratio (HVSR) from microtremors*" (Dal Moro, 2020 – Pure and Applied Geophysics).

Nell'esempio qui sotto riportato è chiara la presenza di una serie di picchi di natura "artificiale" (industriale) a 6.6, 13.2, 19.8 e 26.4 Hz (si noti come - in questo particolarissimo caso - si abbia la frequenza fondamentale [6.6Hz] con una serie di sue armoniche superiori).

Due esempi di funzioni di coerenza visualizzate in modalità 3D con la scala dei colori a rappresentare la relativa frequenza: sulla destra un caso in cui non sono evidenti significative componenti industriali, sulla sinistra un caso con una chiara componente industriale e circa 26.5 Hz.

Riguardo ai dati di cui al plot di sinistra vedi anche le due immagini di seguito riportate e relative a:

1) funzioni di coerenza in funzione della frequenza (per tutte le tre combinazioni NS-EW, EW-UD, NS-UD) e spettri di ampiezza in scala lineare e logaritmica (smussati solamente del 3%);

2) funzioni di coerenza e spettrogrammi (in funzione del tempo).

Gestire dati con componenti industriali chiaramente separabili

Vi sono due modi per tentare di attenuare/ridurre/eliminare segnali industriali:

1) smussare in maniera massiccia gli spettri (50% e oltre [vedi parametro *spectral smoothing*]);

2) effettuare il *picking* manuale della curva HVSR o, se la situazione è complessa, degli spettri di ampiezza delle componenti UD, NS e EW.

Il primo approccio non richiede molti chiarimenti e non viene quindi qui approfondito.

Vediamo qualche dettagli sugli altri due approcci, fermo restando che per poterli porre in atto in modo serio si devono seguire i nostri corsi formativi.

Da sottolineare che la bontà di questo genere di operazioni dipende *in toto* dall'adeguatezza delle conoscenze teoriche di chi le effettua.

a) *picking* della curva HVSR

In questo caso si va a piccare direttamente la curva HVSR potenzialmente "contaminata" da segnali di carattere industriale.

A start back to a		
HVSR	× _	pick data
save pick	ed HV	compute

1) Dal menù a tendina si seleziona l'opzione "HVSR";

2) Si clicca il pulsante "pick data";

3) Si comincia a piccare la curva desiderata (per chiudere il picking si usa il pulsante destro del mouse);

4) Si salva la curva piccata cliccando sul pulsante "save picked HV".

b) *picking* degli spettri di ampiezza delle tre componenti e successivo ricalcolo della curva HVSR:

1) Computo dell'HVSR con *smoothing* limitato (indicativamente 2-3%)

2) Dal menù a caduta si seleziona la componente da piccare (in sequenza si devono piccare tutte e tre le componenti);

3) Una volta selezionata la componente si clicca il pulsante "pick data";

4) Si comincia a piccare lo spettro di ampiezza selezionato (si consiglia di seguire sempre lo stesso ordine: UD, NS e EW; per chiudere il *picking* si usa il pulsante destro del mouse);

Si ripetono i punti 2, 3 e 4 in modo tale da piccare tutti i tre spettri di ampiezza (delle tre componenti UD, NS e EW).

	·
EW amplitude 🗸	pick data
save picked HV	compute

5) Finita di piccare l'ultima componente, di deve (ri)calcolare il rapporto H/V sulla base degli spettri delle tre componenti appena piccate. Per farlo si prema il pulsante "compute". A questo punto uscirà una schermata riepilogativa del tutto e la curva HV ri-computata sarà automaticamente salvata nella cartella di lavoro come file avente lo stesso nome del file di campagna con in aggiunta il suffisso "_reconstructed.hv".

Un esempio speditivo

1) computo con il 3% di *smoothing* (incidentalmente, in questo modo i criteri SESAME sono del tutto sballati). Evidente la nota componente industriale a 1.5 Hz (comune in tutto il Friuli e non solo).

Durante questa prima fase si otterranno, tra gli altri, anche i due seguenti grafici:

In alto: grafico delle funzioni di coerenza delle tre possibili combinazioni in funzione del tempo; in basso: spettri di ampiezza in funzione del tempo (spettrogrammi). Evidente il segnale industriale a 1.5 Hz.

Funzioni di coerenza: evidente il segnale industriale a 1.5 Hz.

2) picking della componente UD

3) picking della componente NS

5) computo dell'HVSR dagli spettri di ampiezza piccati ad ottenere il seguente grafico e il relativo file .hv

Considerate e ricordate che, per motivi statistici, la media delle curve HVSR non è identica all'HVSR calcolato dalla media degli spettri di ampiezza. Ciò significa che alle basse frequenze (più "instabili") le due curve possono differire leggermente. Se tutte le operazioni coinvolte nelle analisi sono state svolte correttamente, le due curve rientrano nei margini di incertezza stessa (vedi curve relative alle deviazioni standard). Ricordate inoltre che per queste operazioni di *picking* stiamo e dobbiamo lavorare con dati smussati molto poco (2-3% circa) e quindi con curve non ideali.
Criteri SESAME della curva HVSR ricostruita "a mano"

Chiaramente, con questo tipo di elaborazione/ricostruzione, si lavora con le curve medie finali (degli spettri di ampiezza e dell'HV).

Poiché i primi 3 criteri SESAME (per la curva nella sua interezza) e i criteri 4, 5 e 6 per la valutazione di un "picco" lavorano invece (secondo criteri "statistici") considerando **tutte** le curve HVSR di ciascuna finestra, non è di fatto possibile calcolare tutti i criteri SESAME della curva ricostruita (avendo noi qui a disposizione solo le curve medie finali).

Si possono "calcolare" (a *vista*) i soli primi 3 criteri per un "*reliable peak*" (picco affidabile).

l primi due richiedono che nel *range* di frequenza $f_0/4 - 4*f_0$ (essendo f_0 la frequenza del picco considerato), il valore della curva scenda almeno alla metà del valore del picco.

Il terzo è ancora più banale (il valore del picco deve superare il valore di 2).

Se prendiamo in esame il seguente esempio (il segnale a 5 Hz è chiaramente di natura industriale), possiamo notare come (anche considerate le deviazioni standard) tutti i primi tre criteri per un *"reliable peak"* e relativi alla curva ricostruita (curva verde nel riquadro in basso a destra) sono certamente rispettati [f0 pari a circa 7Hz e range di frequenze da considerare pari dunque a 1.75-28 Hz].

Rimozione automatica di segnali industriali

Nell'angolo in alto a destra del pannello HVSR vi è il gruppo "INDUSTRIAL". Impostando i parametri appropriati è possibile utilizzare il pulsante "**processing industrial signals**" per eliminare (o attenuare) semi-automaticamente eventuali componenti industriali che alterano la curva HVSR.

Cosa sono i due campi/parametri in cui inserire i due (unici) parametri necessari per svolgere questa operazione? Come per tutti i pulsanti e parametri, alcuni informazioni (*tips*) di base sono fornite semplicemente passandoci sopra il mouse.

Il **primo parametro (sulla sinistra)** è il valore di soglia per le funzioni di coerenza mentre il **secondo parametro (sulla destra)** è il valore di soglia per le derivate degli spettri di ampiezza.

Considerate e ricordate sempre che i parametri "giusti" dipendono dal sito e dai dati ed è impossibile definire dei valori universali.

La procedura si svolge fondamentalmente in tre *steps*: a) identificazione dei segnali industriali; b) rimozione dai dati; c) interpolazione dai dati rimossi.

Ci sono quattro "parametri" da impostare:

1) il valore di soglia per la funzione di coerenza (valori superiori al valore specificato sono considerati espressione di un segnale artificiale/industriale);

2) il valore di soglia per la derivata degli spettri di ampiezza (valori superiori al valore specificato sono considerati espressione di un segnale artificiale/industriale);

3) le componenti (Z, NS e/o EW) da utilizzare per calcolare le derivate degli spettri di ampiezza sopra menzionati;

4) il tipo di interpolazione da utilizzare per interpolare tra i punti rimossi in quanto attribuiti a una componente industriale.

Ecco un esempio che dovrebbe chiarire come funziona (approfondimenti nelle nostre pubblicazioni e nei nostri webinars/workshops):

a) caricare i dati del microtremore e (opzionale) foto (georeferenziata)

HarifundaceA & wintk400A Harizonal to Vesical Special Ratio (HVIR)		×
() @ 555 () () () () () () () () () () () () ()		
show owness data reset multiple HV3R batch processing	19P_2021-09-15_17-19_Area_casetta_Nord_campo.seg2 (resampled: 64 Hz, length: 7.9997 min)	open working folder
step#1 (optional) - decimate		Insert field notes
step#2 - HV computation		industrial
remove events 20011622. 6 10. C doan axos		0.5 0.5 *** *
20 window kngth (s) Min. fran (8.5 Hz		processing industrial signals
b tapering (%)		
47 ampitude tricshold total removal		particle motion & TLAA
250 Hover and an		Particle Motion & TLAA
2 moding mean		your comments to the datalanabisis
3 detecting order HDI IDC-4.5 Hz =		pheto
dutoralis mean		A DESCRIPTION OF THE REAL PROPERTY OF THE REAL PROP
_ indide industrial removal		
particle works and an even caves compute		
configurer to matter markets (T)		
directivity analysis	2445	
Telegranization for Tegringfor 10 50 100 Px compute		and the second s
save- option#1: save HVSR as it is		
2000 112 from 0.5 to 20 114		CARE A TO CARE AND LOUGH
atten MV destes (an P in)		[Lat: 46.096677 - Long: 13.483126]
2		
picking HV or amplitude spectra		
C save sitted W. compute		
evilete analyseis (PriVeidal)		
200 average Vis (m/z)		
South Vs of the bedrook		
2 rises		
drawhighlight 10 Hz		
directivity over time		
directivity in time \$100 2003. 10 s		Income
	to model the myork (also jointly with nonsurrace, MASW or RemiciSAC data), go to the pertinent panels and upload the saved HV curve	in veraign

b) computo dell'HVSR

 $\int_{10^{6}}^{10^{6}} \int_{10^{6}}^{10^{6}} \int_{1$

In questo caso la presenza di due componenti industriali a circa 1.5 e 4.6 Hz e piuttosto chiara soprattutto negli spettri di ampiezza (smussati dello 0.5%) mentre le funzioni di coerenza sono, in questo caso, piuttosto complesse e possono solo confermare il segnale a 1.5 Hz (usualmente sono altrimenti estremamente chiare - questo è in realtà un dataset piuttosto insolito).

È importante comprendere come i valori di *default* vadano modificati sulla base delle caratteristiche dei dati di volta in volta analizzati. Si deve fare in modo che tali valori di soglia vadano a selezionare i segnali industriali che vogliamo rimuovere.

Per cercare di rimuovere l'influenza di questi segnali sull'HVSR:

1) impostiamo un valore molto alto per la soglia delle funzioni di coerenza (dato che, in questo caso, non vogliamo usare le funzioni di coerenza per identificare le componenti industriali) e un valore basso per la derivata degli spettri di ampiezza; dato che la

componente industriale a 4.6 Hz è evidente soprattutto lungo le componenti NS ed EW (vedi spettri di ampiezza riportati nella figura precedente) scegliamo di considerare la derivata media di entrambe le componenti orizzontali;

Possiamo ora cliccare il pulsante "**processing industrial signals**" e ottenere il seguente risultato (il significato di ciascun grafico è chiaro dal titolo e dalle quantità riportate in ordinata e ascissa):

Due note:

a) poiché abbiamo deciso di fissare una soglia molto grande (0.9) per le funzioni di coerenza, la selezione dei segnali industriali non è basata sulle funzioni di coerenza;
b) poiché abbiamo fissato un valore di soglia molto piccolo per la derivata degli spettri di ampiezza, i due segnali industriali sono stati correttamente identificati per mezzo di esse (vedi il grafico "mean amplitude derivative for the horizontal components [NS&EW]").

HoliSurface[®]

Nel grafico qui sopra riportato, la curva verde rappresenta la curva HVSR "pulita", libera dalle componenti industriali identificate attraverso i parametri sopra descritti (quella blue è invece l'HVSR originario contente il forte segnale industriale a 1.5 Hz e un minore segnale a circa 4.6 Hz). Ancora una volta dobbiamo sottolineare che i parametri corretti dipendono dai dati e devono essere impostati con molta cura dall'utente (che deve aver dunque capito come funziona la procedura).

Qui di seguito tre ulteriori esempi di rimozione di componenti industriali per tre diversi *datasets* (come vedi i parametri cambiano a seconda delle caratteristiche del dato):

HoliSurface[®]

Modellazione della curva HVSR

Sia durante la modellazione diretta che nell'inversione automatica è buona norma (diremmo assolutamente raccomandato) inserire sempre uno strato molto profondo e molto veloce che serve a stabilizzare la matematica che sta dietro il computo dell'HVSR. In pratica questo significa che si deve riprodurre la situazione reale nel modo più corretto. Se nella vostra zona ci sono ad esempio (semplifichiamo) 10 metri di argilla e poi vari metri di ghiaie, per simulare correttamente il picco legato a tale contatto è anche necessario introdurre un contatto profondo tra le ghiaie e quello che ci deve essere sotto anche se tale contatto profondo non vi interessa e non è di fatto "visibile/identificabile" coi vostri dati.

Quindi, un modello che per voi è:

10 m di limi (V_S: 140 m/s)

semi-spazio di ghiaie (Vs: 550 m/s - per svariate decine o centinaia di metri)

deve essere considerato/modellato come: 10 m di limi (Vs: 140 m/s) 1000 m di ghiaie (Vs: 550 m/s) semi-spazio roccioso (Vs: 1200 m/s)

Aggiungendo uno strato profondo veloce (di fatto "invisibile") otteniamo:

Come si può vedere ora il picco relativo al contatto limi-ghiaie è minore (da circa 6, il picco è sceso a circa 4.4) e di forma leggermente diversa.

Va sottolineato che questo è legato alla matematica dell'HVSR (nel report finale non si deve poi per forza includere tale livello profondo se nei dati non ve ne è evidenza - l'evidenza dovrebbe risultare a frequenze molto basse).

Si ricordi anche il ruolo del fattore alfa (α) [valori via via minori fanno abbassare la curva HVSR).

Il rapporto spettrale H/V e le onde di Love: il fattore α

Estratto da

La curva HVSR misurata in campagna è il risultato dell'azione congiunta delle onde di Rayleigh e di Love essenzialmente secondo la seguente formulazione:

$$\sqrt{\frac{\alpha \mathsf{H}_{\mathsf{L}}(f) + \mathsf{H}_{\mathsf{R}}(f)}{\mathsf{V}_{\mathsf{R}}(f)}}$$

essendo H_R e V_R il contributo delle onde di Rayleigh (in termini di *power spectra* - vedi Arai and Tokimatsu, 2004) sulla componente orizzontale (H) e verticale (V), e H_L il contributo legato alle onde di Love (il parametro α può quindi essere considerato come il contributo delle onde di Love sull'HVSR misurato in campagna).

Per modellare in modo completo il rapporto HVSR di campagna si deve quindi considerare in modo appropriato il valore del parametro α , cioè la quantità relativa di onde di Love che, incidentalmente, è verosimilmente funzione delle specifiche condizioni meteo/stagionali

La modellazione presentata in Figura A mostra l'effetto delle onde di Love: lo stesso profilo VS è utilizzato per calcolare l'HVSR considerando due diversi (estremi, $\alpha = 0.2 e \alpha = 0.9$) valori del parametro α .

Due elementari conseguenze:

1. L'ammontare relativo di onde di Love (espresso dal fattore α) andrebbe considerato come una delle variabili nell'inversione/modellazione della curva HVSR (l'esperienza insegna che tale valore in genere assume un valore tra 0.3 e 0.5).

2. La curva HVSR da sola è del tutto insufficiente a vincolare la definizione di un profilo V_S anche quando sono disponibili informazioni stratigrafiche/geologiche e l'unica soluzione è fornita dall'analisi congiunta con altri dati geofisici (quali ad esempio la dispersione delle onde di superficie).

Figura A Effetto delle onde di Love sulla curva HVSR: (a) profilo V_S considerato; (b) curve HVSR ottenute considerando una diversa "quantità" di onde di Love (il fattore α).

Ulteriori dettagli in <u>Surface Wave Analysis for Near Surface Applications</u> (Dal Moro G., 2014 - Elsevier, 252pp).

Inversione automatica della curva HVSR

Il pannello di inversione di un singolo *observable* ("**single obs inv: disp or HVSR**") di *HoliSurface* consente di invertire in modo automatico una curva HVSR (precedentemente determinata) inserendo dei limiti (spessori e velocità minime e massime per ciascuno strato).

Prima di effettuarne la valutazione, la modellazione o l'inversione della curva HVSR, ricorda sempre di identificare e rimuovere possibili *segnali industriali* (vedi precedenti sezioni del manuale).

Procedura:

- 1) Caricare la curva HVSR (file .hv) precedentemente computata (e mondata da possibili segnali industriali);
- Fornire i limiti (Vs e spessori) scegliendo un modello precedentemente valutato (option#2 – raccomandata) o a partire dal numero di strati (option#1 – i valori di Vs e spessori massimi e minimi sono comunque responsabilità dell'utente);
- 3) Scegliere il numero di modelli e generazioni, il valore del fattore alta (in genere attorno a 0.3) e gli altri parametri (numero di modi da utilizzare, percentuale di libertà per i valori del Poisson eccetera) [vedi precedenti sezioni del manuale];
- Se stiamo considerando una curva in un *range di frequenze* particolarmente alto (i limiti utili per le comuni applicazioni geologiche-geotecniche sono generalmente tra 0.5 e 15 Hz), è utile incrementare il numero di "*samples per trace*";
- 5) Caricare una foto (possibilmente geo-referenziata) del survey (opzionale);
- 6) Scegliere la massima profondità da visualizzare per il profilo Vs finale;
- 7) Lanciare l'inversione (pulsante **RUN**).

Qui di seguito un esempio di questo tipo di operazione.

HoliSurface[®]

Ovviamente il problema dell'HVSR è sempre lo stesso: la non unicità della soluzione ed è per questo che lo *spazio di ricerca (search space)* va fissato con molta cura (in base alle tue ipotesi/conoscenze in merito alla stratigrafia locale) e preferire l'inversione <u>congiunta</u> <u>assieme a dati di dispersione</u> (spettri di velocità).

Una "peculiarità" di questo pannello. Se alla fine dell'operazione di inversione il risultato non è troppo distante dal dato di campagna ma non sei ancora del tutto soddisfatto, puoi rilanciare l'inversione senza modificare alcun parametro e la nuova inversione partirà dal modello appena identificato (nella precedente inversione).

La "*critical depth*" della curva HVSR usata è stimata sulla base della procedura riportata nell'articolo *On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies* (Dal Moro et al. 2019) [si noti come il valore dell'eventuale "picco" nulla ha a che fare con la profondità in qualche modo investigata che dipende invece dalla frequenza minima della curva caricata].

10. Analisi vibrazionali (DIN 4150, UNI 9614 e ISO 2631)

Il modulo "DIN4150, UNI9614, ISO2631" consente di analizzare un *dataset* allo scopo di verificare se le vibrazioni superano o meno certi valori di soglia definiti da alcune normative del settore.

Le applicazioni più classiche sono legate all'analisi delle vibrazioni indotte da volate di cava, lavorazioni di cantiere, passaggio treni o metropolitane in ambiti urbani eccetera.

Per eseguire tali analisi è necessario che i dati siano stati acquisiti con una strumentazione che restituisca i dati espressi in *unità fisica* (mm/s o m/s) e non in "*counts*" (unità di per sé priva di significato fisico in quanto legata all'elettronica della strumentazione utilizzata). Il formato dei dati deve essere il solito formato SAF (cioè il formato comunemente utilizzato per acquisizioni passive utili ad analisi HVSR).

Raccomandazione:

usa velocimetri (geofoni) ed evita di utilizzare accelerometri.

In estrema sintesi: passare da velocità ad accelerazioni è un'operazione banale (*derivazione*), mentre passare da accelerazioni a velocità è cosa che da sempre accuratamente evitata da tutti i ricercatori in quanto l'operazione di *integrazione* è di per sé "instabile" e fornisce quasi necessariamente valori di velocità poco affidabili.

Acquisizioni dati per analisi DIN/UNI/ISO: attenzione alla saturazione

(con il nostro sistema di acquisizione HS e in generale)

Il punto essenziale è che i dati che inseriamo nel software siano non in "unità arbitrarie" ("counts") ma in unità fisiche (nel nostro caso mm/s).

Se utilizzi il nostro sistema di acquisizione *HoliSurface*[®], in fase di acquisizione devi sincerarti in alcune cose:

- **1.** avere inserito la corretta sensibilità del geofono (il geofono HOLI3C viene fornito con il valore di sensibilità);
- se stai monitorando vibrazioni di valore elevato (indicativamente maggiori di 0.06 mm/s). l'acquisizione va eseguita avendo cura di evitare di attivare l'opzione "High Gain for all geos";
- **3.** quando carichi i dati, abbi cura di selezionare correttamente le unità di misura degli stessi (vedi *Appendice L: ottenere dati in mm/s coi nostri strumenti*).

Se il guadagno è male impostato e/o se il segnale ha un'ampiezza eccessiva rispetto il range dinamico del nostro *sistema di acquisizione*, si rischia la saturazione del segnale (che rende i dati inutilizzabili ai fini dell'analisi delle ampiezze).

Qui di seguito due segnali visualizzati dal pannello che stiamo considerando (pulsante "show data").

Pannello principale

La schermata principale di questo modulo è molto simile a quella usate per le analisi HVSR. In estrema sintesi si tratta di (vedi anche casi studio):

1. Caricare il file SAF di campagna (seconda icona da sinistra nella barra degli strumenti);

2. Rimuovere (se desiderato) le parti di segnale in cui non si manifesta alcun "evento";

3. Procedere con il computo dei livelli di vibrazione rispetto gli edifici (normativa e limiti DIN4150) con il pulsante "compute".

Di *default* le analisi sono svolte sull'intero *dataset* (cioè un'unica finestra), ma se si agisce sul parametro "*window length*" è possibile modificare tale criterio. Se ad esempio il segnale che desideriamo analizzare è molto lungo (ad esempio 1 minuto) e desideriamo avere una media della sua intensità, è possibile dividere il segnale in una serie di finestre di lunghezza pari a "*window length*" (opzione comunque sconsigliata agli utenti non esperti).

Se successivamente si desidera valutare gli effetti sull'uomo (UNI9614), basterà fare il computo rispetto alle accelerazioni (pulsante "accelerations UNI9614").

Rimuoviamo un po' di dati prima e dopo il passaggio del treno (operazione opzionale - pulsante "*clean data*"):

Con il pulsante "compute" valutiamo la pericolosità rispetto alle strutture/edifici (normativa DIN4150) determinata considerando le velocità (si ricordi che il software assume che i dati rappresentino proprio le velocità in mm/s - unità standard per i geofoni calibrati):

Si noti come in questo caso le vibrazioni indotte dal passaggio del treno non superino nessuna delle soglie di normativa.

Valutiamo ora (pulsante "*accelerations*") la valenza del passaggio del treno rispetto agli effetti sull'uomo (UNI9614) che sono determinati considerando le *accelerazioni* e non più le *velocità*.

HoliSurface®

Si noti come, in questo caso, il passaggio del treno (che non rappresentava un problema rispetto gli edifici) sia in grado di generare un disturbo sull'uomo eccedente i limiti fissati dalla UNI9614.

Questo fatto (le vibrazioni non eccedono i limiti rispetto agli edifici ma superano invece quelli rispetto agli effetti sul corpo umano) è piuttosto comune e non deve sorprendere.

Esempio analisi vibrazioni indotte da lavorazioni di cantiere all'interno di un edificio a circa 50 m di distanza 2019-11-21_09-54.seg2 (500 Hz; 900 s dataset: 2019-11-21 09-54 sec 10 10 trans ng (%) 0.5 3 8 57 150 frequency (Hz) 12 compute **DIN 4150 Analysis** LANDANA max freez 150 H n log-log 👻 ret nm/s oliSurfa vert rad trans 0.5 3 8 22 57 150 1 frequency (Hz) arking folder

Si noti come le vibrazioni indotte dalle lavorazioni di cantiere (rullo compressore - *road roller*) siano ampiamente al di sotto delle soglie di normativa.

Valutiamo ora (pulsante "*accelerations*") la valenza di tali vibrazioni rispetto agli effetti sull'uomo (determinate considerando le *accelerazioni*).

Si noti come, anche in questo caso, le vibrazioni indotte (che non rappresentava un problema rispetto gli edifici) generino un disturbo sull'uomo eccedente i limiti fissati dalla UNI9614.

Questo fatto (le vibrazioni non eccedono i limiti rispetto agli edifici ma superano invece quelli rispetto agli effetti sul corpo umano) è piuttosto comune e non deve sorprendere.

Possiamo verificare i risultati anche rispetto le **ISO-2631** (introdotte in una prima forma nella *release* HS-2019 e che, a differenza delle UNI9614, tentano di considerare non semplicemente i picchi delle accelerazioni ma il loro effetto cumulativo).

Anche qui (vedi sotto), i limiti suggeriti dalla normativa ISO 2631 sono superati per i due assi orizzontali ma non rispetto l'asse Z (il **colore rosso** indica superamento del rispettivo limite, mentre il **colore verde** indica non superamento).

Alcuni link e documenti utili:

http://www.civil.ist.utl.pt/~luisg/textos/REGC.pdf

http://www.nzta.govt.nz/projects/completing-wrr/docs/docs-enquiry/application/g19assessment-of-vibration-effects-report.pdf

https://uwaterloo.ca/centre-of-research-expertise-for-the-prevention-of-musculoskeletaldisorders/resources/position-papers/whole-body-vibration-overview-standards-useddetermine

Ulteriore breve caso studio

È possibile caricare un dataset "composito" in cui, ad esempio, le prime tre tracce si riferiscono ad un triassiale mentre le successive a *n* geofoni a componente singola) [vedi dati di seguiti mostrati].

È possibile notare come in questo caso il massimo dell'ampiezza risulti di circa 2.6 mm/s (riferendosi chiaramente al sensore più vicino alla macchina che produceva le vibrazioni).

Si riporta qui di seguito l'analisi DIN4150 riferita al sensore P1 (quello con le ampiezze maggiori in quanto il più vicino alla sorgente di vibrazioni).

Domanda (comune)

deve esserci corrispondenza tra le frequenze delle massime ampiezze (indicate dagli spettri di ampiezza riportati nella parte alte della schermata) e quelle dei picchi delle massime velocità (parte bassa della schermata, grafico frequenza-velocità)?

Risposta

Si e no (la natura delle cose spesso sfugge semplicistiche logiche binarie).

Le frequenze degli spettri d'ampiezza si riferiscono ad un segnale supposto periodico (vedi teoria su cui si fonda il computo degli spettri di ampiezza) mentre il picco di velocità si riferisce necessariamente ad un punto/dato specifico e unico/isolato (che non ha di per sé una frequenza specifica).

Questo fatto diventa particolarmente importante quando stiamo considerando eventi isolati (ad esempio volate di cava).

Quando invece stiamo analizzando vibrazioni di carattere "continuo" (legate spesso ad esempio a lavorazioni di cantiere) le cose sono invece chiaramente più strettamente legate e le frequenze dei picchi di velocità e dei massimi degli spettri di ampiezza risultano usualmente praticamente le medesime (vedi esempio mostrato nella precedente figura).

I tre spettrogrammi riportati qui di seguito (rispettivamente per le componenti verticale, radiale e trasversale) mostrano le altissime frequenze utilizzate (attorno ai 40 Hz, lontanissime dalle frequenze caratteristiche di qualsiasi tipologia di edificio).

Come chiaro dai dati e dalle analisi illustrate, il valore massimo di vibrazione (attorno ai 2.6 mm/s, ad una frequenza attorno ai 40 Hz), si trova ben al di sotto dei limiti suggeriti dalla normativa.

Analisi dell'attenuazione del segnale

L'analisi del decremento di ampiezza in funzione della distanza dalla sorgente (offset) è utile per svariati motivi (illustrati nel dettaglio duranti i nostri incontri formativi).

Nel caso qui riportato, l'analisi del decremento di ampiezza in funzione della distanza dalla sorgente (*offset*) mostra come a circa 4.5 m dalla sorgente il picco di velocità osservata risulti di 4.6 mm/s (40% del limite di normativa a 30 Hz [frequenza di lavoro della macchina utilizzata]), decrescendo poi sino a 1 mm/s (9% del limite di normativa) a 9.5 dalla sorgente.

Ulteriore dataset

Dati *multi-offset* per verifica dell'attenuazione delle vibrazioni e poterne predire l'ampiezza a qualsiasi ulteriore distanza/offset.

In questo caso: offset minimo 5.5 m, distanza intergeofonica costante di 1 m.

Si noti come, in ossequio alla teoria, adottando una scala delle ampiezze di tipo logaritmico la curva delle ampiezze tenda ad assumere un andamento di tipo lineare.

Il massimo dei *raw data* è il massimo dei dati come sono stati caricati (cioè dei dati grezzi). Il massimo dell'inviluppo (*envelope*) è il massimo dell'inviluppo dei dati caricati. Le due cose (i rispettivi valori) dovrebbero essere molto simili sebbene, per la natura stessa dell'inviluppo, è normale che il massimo di quest'ultimo possa essere leggermente superiore (dipende dal carattere dei dati e dal campionamento utilizzato – la differenza non dovrebbe essere comunque drammatica [vedi immagini sopra riportate nelle quali la curva rossa (massimo dell'*envelope*) e blu (massimo dei dati grezzi) sono praticamente sovrapposte]).

11. Inversione congiunta spettro velocità di gruppo + HV

Esiste anche una procedura automatica di inversione dello spettro di velocità e del rapporto spettrale HVSR (modulo "Joint Inversion MFA+HVSR").

Un esempio di approccio ragionato al problema è presentato nell'articolo *Insights on Surface Wave Dispersion and HVSR: Joint Analysis via Pareto Optimality* (Dal Moro G., 2010), J. Appl. Geophysics, 72, 29-140

La procedura è del tutto analoga alle precedenti:

1. Caricare uno spettro di velocità (di gruppo) precedentemente salvato

2. Caricare una curva HVSR precedentemente calcolata (si suggerisce di rimuovere frequenze maggiori di, indicativamente, 15 Hz)

3. Fissare i parametri di inversione (incluso lo "spazio di ricerca" a partire da un modello di partenza precedente identificato durante la fase di modellazione diretta) e lanciare l'inversione.

12. Acquisizioni e analisi MAAM

MAAM è l'acronimo di *Miniature Array Analysis of Microtremors* (Cho et al., 2013). Si tratta, in breve, di un'acquisizione passiva svolta considerando un *array* a simmetria circolare (triangolo o pentagono) con un raggio estremamente ridotto (per le più comuni applicazioni geotecniche parliamo di indicativamente un paio di metri) e in grado di rilevare la dispersione della componente verticale delle onde di Rayleigh a frequenze anche piuttosto basse (indicativamente da 3 Hz in su' – a seconda della strumentazione, delle caratteristiche del sito e dalla geometria utilizzate).

Si tratta di una tecnica particolarmente efficace e sofisticata che, proprio per questo, richiede estrema cura e attenzione sotto tutti i punti di vista: adeguate e serie conoscenze teoriche, ottimo *sistema di acquisizione* (= sismografo + cavi + geofoni) e cura sia in fase di acquisizione che di *elaborazione*.

È da auspicare venga adottata da chi, a livello di formazione superiore, ha seguito seri corsi di sismologia (in cui *matematica* e *fisica* hanno un ruolo preponderante). Da evitare l'acquisizione con strumentazione non esplicitamente testata *ad hoc* e l'analisi senza aver investito tempo ed energie nello studio dei libri e degli articoli inerenti tale metodologia e senza aver seguito specifici e adeguati incontri formativi.

Alcune raccomandazioni

Per farlo sono necessari 4 o 6 geofoni verticali di ottima qualità (espressamente testati per MAAM) accoppiati al geofono triassiale (HOLI3C) da noi proposto per acquisizioni HVSR, *HoliSurface*[®] e MAAM.

È possibile utilizzare geofoni da 4.5Hz? Solo se il sismografo che abbiamo a disposizione è di ottima fattura (ottimo rapporto Segnale/Rumore) e i geofoni da 4.5 Hz sono ad alta sensibilità ed espressamente testati *ad hoc* per <u>questo</u> tipo di acquisizioni.

È fondamentale sottolineare con molta forza che il rapporto segnale/rumore (S/N) è un fatto assolutamente centrale nel caso di acquisizioni MAAM: <u>sismografi dalle non eccellenti</u> caratteristiche non possono essere utilizzati in quanto questo metodo è fortemente influenzato dal rapporto S/N dello strumento.

È la combinata del sistema "sismografo+geofoni" che determina la qualità del segnale e almeno uno di questi 2 elementi deve essere eccellente (naturalmente meglio se lo sono entrambi).

Ad ogni buon conto è solamente attraverso test specifici sulla propria strumentazione che si può essere certi che il nostro sistema funzioni.

Eliosoft declina qualsiasi responsabilità in caso di utilizzo di soluzioni *hardware* (geofoni e sismografi) non specificatamente testate per acquisizioni/analisi MAAM.

In sintesi:

utilizza una strumentazione testata e certificata per questo **specifico** tipo di acquisizioni. *Eliosoft* fornisce sia la strumentazione che, in caso, possiamo verificare la qualità della vostra (in questo secondo caso dovete certamente venire a trovarci in modo da effettuare i test necessari).

Chiaramente, non possiamo analizzare o fornire assistenza nel caso i vostri dati siano stati registrati con un sistema di acquisizione inadeguato o non **specificatamente** testato/validato.

12.1 Acquisizioni

L'acquisizione è di tipo passivo e secondo una geometria a triangolo o pentagono: ai vertici, come anche al centro, sono posti i geofoni verticali (dalle ottime caratteristiche e con *curve di risposta perfettamente <u>identiche</u>*).

Chiaramente per "nord" (eccetera) non si intendono i punti cardinali ma le direzioni "fittizie" che leggeremmo nel momento in cui ci immaginiamo di guardare l'array dall'altro.

Questo diventa fondamentale nel momento in cui sui dati acquisiti, oltre all'analisi MAAM si svolgerà anche quella ESAC (cosa possibile dalla release 2020).

Se durante l'acquisizione si è seguita una qualsiasi altra regola, al momento del caricamento dei dati si potrà/dovrà indicare quei canali (in quell'ordine).

Esempio: abbiamo acquisito secondo l'ordine Nord-Ovest-Est-Centro.

Nella finestra di dialogo (al momento di caricare i dati nella sequenza necessaria, cioè centro-nord-est-ovest) dovremo indicare i seguenti numeri:

4132

Acquisizione congiunta ottimizzata MAAM+HVSR

La combinazione tra raggio adottato e velocità delle onde di Rayleigh (nel sito in esame) definisce il range di freguenze che sarà possibile analizzare. Per gli scopi più comuni (prime decine di metri) è in genere utile fare un'acquisizione (di indicativamente 15/20 minuti) Raggio (m) con un raggio di 1.5-3 metri.

Dalla release 2022, potrà comparare l'analisi MAAM e SPAC/ ESAC (il range di frequenze visibili con l'ESAC/SPAC è di gran lunga inferiore rispetto quello ottenibile con la MAAM).

Importante è anche la protezione dei geofoni dall'azione del vento (vedi immagine qui sotto).

geofono verticale testato per MAAM

protezione geofono dal vento

Se utilizzate geofoni da 2 Hz, a causa della loro delicatezza, quando non sono utilizzati vanno tenuti in corto con un filetto metallico che si avvolge attorno al rame del connettore split spring.

In questo caso sono stati utilizzati sei geofoni da 4.5 Hz (selezionati e testati *ad hoc* in modo da avere un'identica curva di risposta)

Quello che in termini generali raccomandiamo è:

- 1) collegare il vostro triassiale ai primi tre canali;
- collegare i 4 (o 6) geofoni verticali (<u>esplicitamente testati per MAAM</u>) a successivi 4 (o 6) canali (ponendo ad esempio il geofono centrale per primo [cioè come quarto canale]);

[il *file* che si otterrà avrà 7 o 9 tracce: le prime tre relative al triassiale – per analisi HVSR – le successive per l'analisi MAAM];

- fare una prima breve acquisizione (di un paio di minuti) per verificare la qualità del dato (vedi software HS-QC da utilizzare in campagna): se la qualità risulta buona, procedere con l'acquisizione definitiva (15-30 minuti a seconda del sito e degli obiettivi) da utilizzare per le analisi;
- 4) la scelta del nome del *file* è come sempre cruciale. Nell'esempio qui riportato (immaginiamo li raggio sia di 2 m) il nome file sarebbe qualcosa tipo: Z_N_E_MAAMradius2_centralFIRST.seg2

Una volta in studio (breve sintesi –vedi pagine successive):

- Accedere al pannello HVSR di HoliSurface[®] e caricare il file Z_N_E_MAAMradius2_centralFIRST.seg2. Nella finestra di dialogo che si aprirà indicare i canali 1 2 e 3 [per le tracce Z, NS ed EW da utilizzare per il computo dell'HVSR]
- Una volta svolto il computo dell'HVSR andare nel pannello MAAM e caricare lo stesso *file*. Nella finestra di dialogo indicare al software che i 4 geofoni verticali da considerare sono quelli dei canali 4 5 6 e 7.
- 3) Una volta caricati tali tracce si deve inserire il raggio dell'acquisizione e indicare al software qual è il canale relativo al geofono centrale (nel nostro caso è il primo in quanto nel caricare solo le quattro tracce relative alla MAAM abbiamo escluso le prime tre tracce relative al geofono triassiale).

Raccomandazioni in tema di acquisizioni

Evitare in modo assoluto di effettuare acquisizioni ed analisi senza prima aver seguito dei corsi avanzati di formazione specifici su queste tematiche e senza aver prima verificato la bontà del proprio equipaggiamento (la qualità non dipende unicamente dal sismografo in uso ma anche dai geofoni utilizzati - è il *sistema* sismografo-geofoni che determina la qualità del dato).

Per acquisire dati utili ad un'analisi MAAM <u>è fondamentale essere sicuri di quale sia</u> <u>il canale centrale</u> (molti sismografi fan di tutto per gettare *caos* sulla reale sequenza di canali che si stanno acquisendo e non è raro che la sequenza che si porta a casa sia invertita rispetto quella che si credeva).

Per convenzione, il canale/geofono centrale deve essere l'ultimo. Se quindi si usa una disposizione a triangolo, il canale centrale sarà cioè il quarto.

Per esserne certi la cosa migliore è lanciare l'acquisizione (passiva) e dare con un dito alcune piccole bottarelle ("*tic tic*") sul geofono centrale per poi allontanarsi.

Quando si caricheranno i dati si andrà a verificare su quale canale appaiono quelle bottarelle e non avremo dubbi su quale sia il geofono centrale.

Valori più opportuni per il raggio e i tempi di acquisizione

Raggio: su terreni molto lenti utilizzare raggi "grandi" (3-5 m), su terreni "veloci" (dominati da ghiaie) utilizzare raggi di indicativamente 1-2 m.

Tempi: per il tipo di indagini più comuni (un paio di metri di raggio), almeno 20 minuti

Frequenza di campionamento: da 500 Hz (2 ms) sino a 200 Hz (5 ms).

E per i geofoni?

I geofoni devono essere tutti dalle <u>identiche</u> caratteristiche (curva di risposta/sensibilità). Se l'ampiezza di una o più tracce acquisite è eccessivamente diversa rispetto al valore medio (vedi immagine qui di sotto - la prima traccia presenta un'elevata ampiezza rispetto la seconda e terza traccia; anche la quarta traccia ha un'ampiezza anomala) questo è segno che qualcosa non è andato bene e questo potrebbe portare ad analisi poco significative.

Si consideri che la distanza tra i canali è estremamente piccola e, se la strumentazione e l'accoppiamento dei geofoni sono a posto, l'ampiezza media delle tracce deve essere assolutamente comparabile/simile (pressoché identica).

Fondamentale piantare i geofoni perfettamente verticalmente (usare una bolla per verificarlo in modo assolutamente puntuale e rigoroso). Per questo genere di acquisizioni il "*più o meno*" è completamente vietato.

HoliSurface[®]

Di seguito è invece riportato un caso in cui le 4 tracce acquisite mostrano la stessa ampiezza (segno che strumentazione e settaggio del sismografo sono "in ordine"):

Si usino quindi geofoni identici e di ottima qualità e si settino eventuali guadagni del sismografo allo stesso valore.

Importantissimo sapere l'utilizzo di un sismografo completo e intelligente abbastanza da consentire un semplice e completo controllo di qualità del dato in campagna (dotato cioè di un ottimo e funzionale sistema di *trace monitor*).

Primo rapido check della qualità del dato

Un iniziale *check* della qualità del dato è possibile cliccando sul pulsante "**data check**" (nel pannello MAAM tale pulsante è posto in alto a sinistra – "**check data**"). Tale operazione consiste semplicemente nel calcolo della *root-mean-square* dei dati. Se uno dei valori devia eccessivamente rispetto il valore mediano, è possibile che i dati non siano di qualità sufficiente per delle analisi MAAM (viene visualizzato un messaggio di *warning*).

Inutile dire che tale operazione andrebbe di fatto svolta in campagna prima di acquisire i dati (basta acquisire 1 minuto di dati ed effettuare le analisi).

Poiché in campagna sarebbe oltremodo scomodo effettuare tale controllo utilizzando il software *HoliSurface®*, sarebbe opportuno che fosse lo strumento/sismografo utilizzato per effettuare le analisi a svolgere tale semplice operazione.

Dovreste quindi chiedere al produttore del vostro sismografo che inserisca tale *tool* nel software di acquisizione del sismografo.

Nominare un *file* in campagna

Evitate di dare nomi che non raccontano nulla della geometria e tipologia del dato (cose tipo: "lunedì_13e15_PortoCervo.seg2"). I nomi dei files devono avere un senso che aiuti a capire il tipo di acquisizione (sempre la stessa storia...).

Per un'acquisizione MAAM semplice (con 4 geofoni verticali) può ad esempio aver senso dare un nome file tipo il seguente:

Porto_Cervo_MAAM_raggio3m_GeofCentralePrimaTraccia.seg2

Opzioni di calcolo

Durante il calcolo (tasto "**compute**") delle curve di dispersione tramite MAAM sono possibili diverse opzioni:

phase velocity spectrum				
min freq. 3 max freq. 30				
min vel. 80 max vel. 1800				
parameters				
15 window length (s)				
10% 🗸 spectral smoothing				
50% v tapering (%)				
40 v tolerance				
10 👻 velocty increment				
upper limit 35 show				
hold on				
✓ noise computation				
trace normalization				
verbose				
advanced processing				
✓ auto (for raw data)				
central TR=last v compute				

Qui di seguito alcune indicazioni (chiaramente solo un *training* <u>approfondito</u> consente di lanciarsi in analisi MAAM di qualità)

opzioni			
Noise computation	Calcola il rapporto <i>Noise-to-Signal</i> e lo usa per compensare le curve di dispersione	obbligatorio	
Trace normalization	Nel caso si noti che le tracce acquisite non abbiano la stessa ampiezza media (vedi box " <i>ulteriori</i> <i>raccomandazioni</i> "), con questa opzione se ne forza la "normalizzazione" (per salvare il salvabile)	Da utilizzare solo se necessario. Si tratta di un "tentativo disperato" che non può risolvere un serio problema di acquisizione.	
Verbose	Mostra tutta una serie di ulteriori output di natura tecnica	Inserirli nei proprio lavori solamente se stiamo lavorando ad un livello "alto" e ne è chiaro il contenuto.	
Advanced processing	Con questa opzione si tenta di risolvere problemi legati ad eccessiva direzionalità del segnale.	Il suo buon utilizzo richiede <i>training</i> avanzato.	

Quando si lancia l'elaborazione (pulsante "**compute**"), tra le tante cose svolte dal software, vi è la selezione dei dati al di sotto di una certa ampiezza che dipende dal parametro "**tolerance**".

Incidentalmente, nella cartella di lavoro, sono anche automaticamente salvati i 2 relativi files di dati: quello con i segmenti selezionati ("puliti" - file FileSelectedSEGEMENTS.mat) e quello con i segmenti rimossi (FileRemovedSEGEMENTS.mat).

Parametri di elaborazione: nota importante

Ribadendo che la MAAM è una tecnica di acquisizione/analisi che andrebbe riservata a chi ha solide, serie e "sincere" basi sismologiche, preme sottolineare che sono due i parametri che maggiormente influenzano le elaborazioni (quindi gli spettri di velocità di fase ottenuti):

- 1. La finestra di analisi (window length)
- 2. La massima tolleranza (tolerance max)

Che valori usare? Impossibile dare valori immutabili e assoluti. La *window length* dipende in buona misura dal raggio adottato (valori attorno ai 20-25 secondi sono spesso quelli da adottare in caso di raggi attorno ai 2 m, ma diminuiscono per raggi molto piccoli e aumentano per raggi molto maggiori).

Come fare? Provare tre valori/elaborazioni e, valutando gli spettri ottenuti, potete scegliere il valore più opportuno.

La tolleranza (si ricordi di scegliere l'opzione "*below*" in modo tale da tenere solo i segnali di ampiezza inferiore alla "tolleranza massima" fissata) dipende dal carattere dei dati e in particolare dalla tipologia e quantità di eventi transienti (legati in genere a traffico o attività industriali varie).

Le rette lambda (λ)

Compaiono 3 rette lambda (ma con il tasto "show lambda" è possibile visualizzare qualsiasi altro valore). Esse rappresentano il range di frequenze all'interno delle quali, se le operazioni di elaborazione sono state svolte correttamente, la curva di dispersione ottenuta (effettiva/apparente) è da ritenersi affidabile e rappresentativa.

La retta "inferiore" (3.5 λ): rappresenta il limite dell'*aliasing spaziale*. Sotto a tale linea non è possibile ottenere informazioni sulla dispersione. L'esatto valore/numero è in effetti funzione di varie cose e non può essere considerato come assoluto e universale (che comunque in generale non si discosta molto dai valori di 3-3.5).

40 λ : può essere considerata il limite superiore nel caso in cui si sta utilizzando un buon strumento/sistema senza compensare per il "*noise*". In casi meno fortunati rappresenta invece il limite superiore per un *sistema* di scarsa efficienza per il quale si è procedure alla compensazione del *noise* tramite l'opzione sopra descritta ("**noise computation**")

La retta "superiore" (80-90 λ): si raggiunge a due condizioni: 1) si utilizza un buon sistema di acquisizione; 2) si considera la compensazione per il *noise* (sempre comunque raccomandato).

Non si dimentichi mai che nella sismica passiva la "fortuna" (nell'accezione data alla combinazione di casualità, accuratezza delle operazioni di campagna e specifiche condizioni/situazioni che possono "alterare" la reale significatività del dato acquisito) ha sempre un qualche peso.

12.2 Le analisi

I parametri più importanti da fissare in fase di analisi del dato riguardano la **lunghezza della finestra di analisi** (che per i *dataset* comunemente considerati nei lavori più comuni va da un minimo di 2 secondi ad un massimo di 6), lo **smoothing** (cioè lo smussamento della curva di dispersione) e la **tolleranza** (t*olerance* - che definisce la soglia da utilizzare in fase di rimozione automatica dei segnali che superano una certa soglia e che sono eliminati ad evitare di contaminare le analisi con segnali di eccessiva ampiezza - un po' come comunemente fatto nella rimozione degli eventi transienti durante le analisi HVSR).

Infine è anche fondamentale sviluppare la corretta "sensibilità" necessaria a comprendere l'intervallo di frequenze all'interno del quale la curva di dispersione ottenuta è sufficientemente significativa e affidabile (per farlo risulta indispensabile seguire i nostri workshop dedicati specificatamente a *HoliSurface* e un assiduo studio dei vari casi studio commentati che di volta in volta verranno resi disponibili e pubblicati).

Doppia acquisizione MAAM

Nella figura qui di seguito sono presentate due curve di dispersione definite considerando due acquisizioni MAAM con raggio rispettivamente di 0.5 e 2 metri, eseguita con uno strumento "vecchio stile" (16bit digitalizzati "a valle") e in un sito particolarmente ricco in "rumore antropico" (statale + forno crematorio in azione). Le alte frequenze sono quelle definite dall'acquisizione svolta con raggio 0.5m mentre le basse con raggio 2m.

Lo spettro di velocità sullo sfondo deriva da un'acquisizione/elaborazione ESAC.

Le analisi sono poi svolte nel pannello "Disp+HVSR"nel gruppo "HoliSurface, MAAM & HVSR (modelling)".

Si carica la curva di dispersione effettiva (vedi schermata qui di sotto):

Successivamente (operazione opzionale), possiamo anche caricare la curva HVSR:

Agendo su V_s e spessori del modello (modellazione diretta) sarà al fine possibile trovare una soluzione che soddisfi entrambe le osservazioni:

A questo punto cliccando su "report" (in basso a destra) si otterrà anche il profilo Vs:

12.3 Esempi di elaborazione MAAM

Acquisizione effettuata con geofoni (ad "alto guadagno") da 4.5Hz (sia per la MAAM che per l'ESAC).

Questa lieve differenza nell'ampiezza delle tracce non deve spaventare (non attivare l'opzione "*trace normalization*").

13. SSR (Standard Spectral Ratio), SSRn (SSR-noise) SD (Spectral Difference)

Standard Spectral Ratios (SSR e SSRn)

L'SSR è uno dei più classici metodi per la stima degli *effetti di sito*: le tracce sismiche acquisite nel punto di cui si desidera valutare l'amplificazione (o deamplificazione) vengono confrontate con le tracce sismiche raccolte al *bedrock* affiorante (supponendo che questo non si trovi ad eccessiva distanza dal punto rispetto cui vogliamo definire gli effetti di sito). Il punto su roccia è definito "*reference*".

Il tema viene affrontato in dettaglio durante i nostri *workshop* e se ne riportano qui solamente alcuni punti essenziali (si veda anche quanto svolto a questo proposito nel libro pubblicato per la *Springer* nel 2020 - *Efficient Joint Analysis of Surface Waves and Introduction to Vibration Analysis: Beyond the Clichés*).

L'importante è ricordare che l'HVSR non rappresenta una buona stima degli effetti di sito (vedi la sezione dedicata all'HVSR e quella relativa agli spettri di risposta) e l'SSR (e SSRn) rappresenta un modo per definirli in maniera decisamente più puntuale (vedi Perron *et al.* 2018).

Acquisizione dati

I dati vanno acquisiti nei due punti (quello di riferimento roccioso e quello di cui vogliamo verificare l'eventuale amplificazione) possibilmente in sincrono (se ne abbiamo la possibilità) o, in alternativa, in successione nei due punti/siti (lasciando passare il minimo tempo possibile tra le due acquisizioni) [frequenza di campionamento: 100-200 Hz; tempo di registrazione: almeno 30 minuti (se il sito fosse particolarmente rumoroso allungare la registrazione e contemplare la possibilità di acquisire in giorni festivi o di notte)].

Il *Nord* della terna (che come sappiamo non ha nulla a che vedere con il Nord geografico – vedi libro Springer o *Acquisizione e analisi di dati sismici e vibrazionali per studi di caratterizzazione sismica e geotecnica*) deve essere il medesimo per entrambi i siti.

Aquisizione sincrona di dati utili per analisi SSR (come anche per analisi vibrazionali sincrone su edifici).

Esempio di aquisizione sincrona di dati utili per analisi SSR: il "reference site" è su roccia, mentre il punto "investigato" si trova a circa un centinaio di metri di distanza (al centro di un piccolo bacino).

Un esempio di **SSRn** (vedi libro pubblicato per la *Springer* nel 2020) è riportato in appendice H [Esempio#2 [piccolo bacino circondato da colline calcarenitiche] ma per la delicatezza di questi argomenti si raccomanda la partecipazione ai nostri *workshop*.

Acquisizione dati per la determinazione del SSRn: dati sincroni?

A differenza del **SSR**, per il **SSRn** non è strettamente necessario avere a che fare con dati sincroni in quanto analizziamo i microtremori. Nel caso non abbiamo a disposizione due strumenti da far lavorare assieme (dando il via anche semplicemente con un conto alla rovescia al telefono – non è certamente richiesta una sincronia al millisecondo), possiamo registrare i due dati [nel punto di riferimento roccioso e nel sito di cui vogliamo valutare le amplificazioni] in rapida successione, avendo cura di far trascorrere il minor tempo possibile tra le due misure. Certo non si possono confrontare misure prese in giornate differenti o nel caso le condizioni meteo siano nel frattempo cambiate o siano intervenuti fatti legati ad esempio all'inizio di attività industriali/agricole che cambino il regime dei microtremori.

Ribadiamolo: per il **SSRn** si analizzano i microtremori (non i terremoti considerati per l'SSR), quindi basta registrare i dati, pulirli bene dai transienti in modo da ottenere una serie temporale stabile (che contenga <u>unicamente</u> i microtremori) e con caratteristiche di continuità. A quel punto, che i dati siano sincroni o meno non cambia assolutamente nulla.

In pratica (nel caso possediamo un unico triassiale):

- 1) acquisiamo i dati nel punto#1 (i soliti 15-30 minuti a secondo del sito)
- 2) acquisiamo i dati nel punto#2
- 3) puliamo le due serie temporali (o a mano o con lo strumento "automatico" del pannello)

Le serie sono ora confrontabili per l'analisi dei rapporti spettrali SSRn.

Gestione delle foto di campagna in HoliSurface®

Si ricorda che, al fine di ottenere *reports* chiari e completi in modo semplice ed efficace, in campagna è buona abitudine fare foto utilizzando l'app *MapCam* (vedi pertinente sezione nel capitolo "**Generali procedure di utilizzo**"). Nel caso di analisi SSR o SSRn si raccomanda di fotografare entrambi i siti/punti.

Qui di seguito la schermata principale del modulo SSR (e SD) una volta caricati i due files riferiti ai due siti.

Hol/Surface - Spectral Ratio (SR) and Spectral Difference (SD)						
■ (%) ▶1 ▶2						
Project name Antartica	from Velocity to Acceleration					
Save particle motion animations	open working folder					
Type of analysis non-synchronous data						
data uploading and processing						
site/sensor #1 (referenc show 3D motion photo	show 30 motion photo 2020-12-22 18-03 SSR_rock_referenceSITE_CLEAN.SAF (sampling: 500 Hz; length: 18.3105 min; length: 1098.628 s)					
site/sensor #2 show 30 motion photo	2020-12-22_18-33_HVSR_Site2_CLEAN.SAF (sampling: 500 Hz, length: 18.8369 min; length: 1130.216 s)					
show/compare data						
Gaussian filter section						
4 3 automatic cleaning						
save inverse of current spectral ratio						
upload compensation curve						
remove compensation curve uploaded						
computation	reck					
window longth (c) 100	TOCK					
median v Window relight (5)						
1. Spectral Ratio [SR] v min. freq. (Hz) 0.5						
- your 3C geophone - v max. freq. (Hz) 20						
a crust frames						
o Gauss requency shooting to be	sediments					
compute SR / SD log scale verbose						
directivity/rotation						
show synchro data apply the compensation curve						
comparing data Empirical Building Frequency						
height (m): 18 compute						
upload a HVSR curve						

Si noti come (considerando un caso SSRn reale):

1) sia possibile/utile/suggerito di caricare le foto per i due siti;

- è bene caricare dati già mondati da eventi transienti in modo da tenere solamente la componente stabile (ad ampiezza bassa e costante) [questo si può fare in modo molto puntuale ad esempio nel pannello HVSR, salvando il dato pulito come file SAF);
- poiché le frequenze superiori a (indicativamente) 20 Hz sono inutili dal punto di vista sismologico/ingegneristico, sia sempre utile ri-campionare il dato a (solitamente) 64 Hz (vedi teorema di Nyquist-Shannon);
- 4) la frequenza minima di interesse dipende dal tipo di studio/applicazione a cui si è interessati ma le regole sono sempre quelle note dalla logica dell'HVSR (quindi anche la lunghezza della finestra da utilizzare deve essere scelta con le stesse logiche [tipicamente: finestra da 20 secondi e frequenza minima di 0.5 Hz]);
- 5) la differenza tra HVSR (del sito#2) e il rapporto spettrale (SSRn) sia in genere notevole. Nello snapshot riportato qui di seguito si può notare come l'amplificazione dei microtremori tra, ad esempio, 8 2 11 Hz, sia pari a circa 10 mentre l'HVSR non devia significativamente dal valore di 1;

6) la **reale amplificazione** (verificabile solo tramite SSR – quindi di non semplice "soluzione") è in genere a metà strada tra l'HVSR e il SSRn (vedi libro *Efficient Joint*

Analysis of Surface Waves and Introduction to Vibration Analysis: Beyond the Clichés e bibliografia colà citata);

7) Tra i diversi *output* che si ottengono vi è anche la **comparazione tra le density** *functions* del moto della particella sul piano orizzontale presso il sito di riferimento (*reference*) e nel sito investigato nel range di frequenze considerato (vedi snapshot qui di seguito);

8) Al fine di evitare "fraintendimenti" generati dalla possibile presenza di segnali industriali, sono anche computate le **funzioni di coerenza** (e gli spettri di ampiezza non smussati) dei dai relativi ad entrambi i siti (qui di seguito un esempio): chiaramente, l'obiettivo è di evitare di confondere qualche influenza industriale (come vadano lette le funzioni di coerenza e gli spettri non smussati è ampiamente illustrato sia nella sezione dedicata al calcolo dell'HVSR che nel libro pubblicato per la Flaccovio nel 2019).

Nel caso vengano caricate anche le foto georefenziate per entrambi i punti di misura, si otterrà anche la seguente sintesi:

Spectral Difference (SD)

In estrema sintesi la SD rappresenta una variazione sul tema rispetto la SSR.

Se nel caso della SSR gli spettri di ampiezza sono confrontati analizzandone il **rapporto** (spettro sensore#2 / spettro sensore#1), nel caso SD gli spettri sono confrontati effettuandone la **differenza** (spettro sensore#2 - spettro sensore#1).

Questo può risultare utile in talune studi di carattere geotecnico nel caso si voglia quantificare di quanto un certo sito "amplifichi" il segnale in termini di mm/s (e non meramente di rapporto rispetto il sito di riferimento).

È chiaramente da ricordare come tale confronto (per *sottrazione* e non per *rapporto*) abbia senso unicamente nel momento in cui stiamo analizzando dati espressi in unità fisiche (mm/s) e non in "counts".

All'interno della cartella "documents" (una sottocartella presente all'interno dalla cartella di installazione di *HoliSurface*) è presente un esempio di applicazione che si riferisce all'analisi degli effetti delle vibrazioni indotte dal passaggio di convogli ferroviari (vedi "Eliosoft_Tarvisio_Trains_Vibrations_Dissemination.pdf").

In generale questo tipo di utilizzo si può rivelare utile nello studio delle vibrazioni prodotte da attività antropiche (verifica dell'ampiezza di un segnale artificiale in diversi punti rispetto valori di normativa).

15. Analisi vibrazionali su strutture per la definizione degli *eigenmodes*

Acquisire ed analizzare dati utili a definire le frequenze di vibrazione di un edificio (eventualmente da comparare con le amplificazioni messe in evidenza da una *Risposta Sismica Locale*) non è certamente la cosa più difficile tra quelle possibili con una terna calibrata (cioè con un geofono triassiale).

L'importante è non esagerare in sede di "interpretazione" dei dati attribuendo nomi (modi e tipologia dell'oscillazione) che per essere dati in modo serio e ragionato richiedono competenze tipiche dell'ingegnere strutturista piuttosto che del geologo.

Qui di seguito si considererà il caso di acquisizioni svolte con un unico sensore (in questo caso un geofono) posto a piani via via superiori.

Diverso (e più articolato) è il caso in cui a vari piani le misure sono svolte contemporaneamente (ciò consente un'analisi decisamente più rigorosa e quindi analisi decisamente più stringenti e complete).

Posizionamento e orientamento del geofono 3C

Anche per questo tipo di misurazioni, il geofono deve essere posizionato in modo sensato (pena l'inutilizzabilità dei dati). Due raccomandazioni di base:

1) Il geofono deve essere posizionato vicino alle pareti perimetrali (evitare punti in mezzo alle stanze o nelle vicinanze delle scale, vani degli ascensori ecc.);

2) La direzione NS del geofono HOLI3C deve essere fissata considerando gli assi della struttura investigata e **non** il Nord geografico. Una volta scelti i due punti di misurazione (angoli), l'orientamento migliore da adottare per ottenere grafici GHM che possono essere facilmente interpretati, è impostare l'asse EW come direzione che collega i due punti. In altre parole, la direzione NS del geofono/i dovrebbe essere l'asse perpendicolare alla linea immaginaria che collega i due punti di misurazione.

Il metodo GHM (vedi ad esempio il libro pubblicato per la Flaccovio nel 2019) consente di identificare in modo chiaro e puntuale non solo tutti i modi di vibrazioni (con la rispettiva frequenza) ma di discernere anche se un certo modo è **torsionale**, **flessionale** o misto.

Formato delle tracce e cambio polarità

Di *default* il programma assume che i dati presenti nelle tre colonne del file siano ordinati (da sinistra a destra) nel seguente ordine: traccia verticale (UD), Nord-Sud (NS) ed Est-Ovest (EW).

Al fine di ottenere questo, nel caso i dati siano stati acquisiti secondo altre convenzioni, all'atto di caricare i dati è anche possibile invertire la posizione delle tracce (si apre infatti una finestra di dialogo in cui specificare, nell'ordine, la posizione delle tracce UD, NS ed EW.

Se il nostro *sistema di acquisizione* (vedi libro Flaccovio del 2019) è tale da fornirci tracce sismiche con polarità invertita rispetto quella corretta, è possibile invertirla all'atto di caricare i dati. Per farlo è sufficiente inserire il segno *meno* (-) davanti alla rispettiva traccia.

Esempio (vogliamo invertire la polarità della traccia EW – terza traccia): all'atto di caricare il dato, nella finestra di dialogo basterà fare come in figura (abbiamo aggiungo un *meno* davanti alla terza traccia):

			~
Choose the	three channels	of the UD	NS
and EVV C	ompoments (in th	is sequen	ce)
	12-3		
		1	
	Go		
	Go		

Come fare a sapere se il nostro sistema di acquisizione fornisce dati con la polarità corretta? Potete inviarci il vostro sistema di acquisizione e lo testeremo per voi. Durante i nostri incontri formativi diamo i dettagli su come muoversi in modo tale da evitare di commettere errori esiziali durante l'acquisizione e analisi dei dati.

Attenzione: il test per la corretta determinazione della curva RPM riguarda solamente le tracce UD e NS (e non quella EW).

Nell'analisi di dati vibrazionali su edifici è invece necessario verificare come funzione (anche) la traccia EW.

15.1 Tipologie di acquisizioni e analisi

Vi sono almeno tre modi di svolgere acquisizioni ed analisi vibrazionali utili allo studio delle frequenze di risonanza di un edificio.

1- Procedura semplificata (disaccoppiata, uncoupled):

avendo a disposizione una sola terna, si devono acquisire 10 minuti di dati al piano più basso (fondazione) e, successivamente (con la stessa terna), 10 minuti al piano X (in un punto idealmente sulla verticale rispetto la misura precedente).

I dati vengono quindi "confrontati" per ricavare informazioni la cui chiarezza dipende dalla complessità dei movimenti dell'edificio.

Per sintetizzare questo genere di procedura (semplificata) è utile utilizzare un'espressione sintetica quale ad esempio US1 e US3 (*Uncoupled Sensors,* con i due numeri che indicano i piani ai quali sono state effettuare le misure, in questo caso il piano interrato e il terzo piano).

Nel caso di edifici particolarmente alti è possibile e utile effettuare una misura ogni 2 o 3 piani (quindi al piano "zero", al secondo, al quarto e così via).

uncoupled analysis

L'acquisizione sulla sinistra (sensori in due punti "estremi" dello stesso piano) si riferisce al metodo GHM (il metodo che raccomandiamo con forza) che consente di definire se un certo *eigen-mode* è di tipo *torsionale* o *flessionale*.

Il "piano zero"

È il piano rispetto al quale sono poi riferite le misure ai piani superiori. Esso rappresenta idealmente il piano di fondazione. Quindi abbiate cura di scendere il più possibile (in genere si tratta di cantine o parcheggi sotterranei).

2- Sensori Sincronizzati posti a piani diversi (sulla stessa verticale):

Le immagini qui di seguito dovrebbero essere sufficientemente chiare ed esplicative del senso di queste misure.

3- Sensori posti allo stesso piano (metodo GHM): raccomandato

Il tipo di acquisizione/analisi che raccomandiamo è svolto considerando due *datasets* raccolti in due diversi dello stesso piano.

Per comprendere il funzionamento di questo genere di analisi si rimanda al libro "Acquisizione e analisi di dati sismici e vibrazionali per studi di caratterizzazione sismica e geotecnica" (Dal Moro, 2019 – Flaccovio).

È possibile effettuare acquisizioni sincronizzate (saranno in questo caso necessarie due terne dalle identiche caratteristiche) o meno (il metodo GHM non richiede necessariamente l'utilizzo di dati raccolti in modo sincrono ed è possibile porre la propria terna prima nel punto 1 e poi in quello 2).

Qui di seguito la schematizzazione di un'acquisizione sincronizzata svolta con il sistema di acquisizione *HoliSurface*[®]: due terne, sismografo 24bit, un piccolo cavetto che connette la terna direttamente ad uno dei connettori del sismografo e il cavo composto *HoliSurface*[®] che collega il sismografo alla seconda terna (posta distante dal sismografo).

15.2 Acquisizione

Qui di seguito è riportata la semplice sequenza di operazioni da svolgere allo scopo di raccogliere i dati utili a poi a stimare le oscillazioni di un edificio. Allo scopo di crearsi un "protocollo" da seguire poi in modo sempre uguale a sé stesso (evitando così di incorrere in "errori di distrazione") è bene seguire sempre lo stesso *modus operandi*:

1. Andare al piano più "profondo" dell'edificio. Questo può essere un *garage*, uno scantinato, una taverna, il "livello" che rappresenta per così dire il *piano di fondazione* (il luogo in cui il manufatto poggia sul terreno) e sistemare la terna con i due assi (NS e EW) in modo consono agli assi dell'edificio. Nel software questo piano/livello è indicato come *reference*.

È buona cosa sistemare sempre il NS dello strumento in asse con l'asse di maggiore elongazione dell'edificio (se questo non è esattamente quadrato) [vedi "**map view**" nell'immagine riportata qui sotto]. Questo unicamente per darsi una regola generale ed evitare quindi di dimenticarsi come eran state fatte le misure.

È importante (per quanto possibile) effettuare tutte le misure tentando di tenersi lungo la stessa asse verticale [vedi "**3D view**" nell'immagine riportata qui sotto].

Se quindi ad esempio stiamo effettuando misure in un edificio tipico delle città italiane (in cui tutti gli edifici sono "collegati" tra loro a costruire quasi un'unica struttura lungo una strada) in pratica si pone il NS parallelo alla strada stessa.

2. Salire ai piani superiori (avendo cura di tenersi il più possibile lungo un'ideale asse verticale (vedi "3D view") e porre il geofono nello stesso modo. Non è fondamentale effettuare le misure uno per uno su tutti i piani. Avendo ad esempio a che fare con un edificio di 6 piani si può pensare di fare misure solamente al secondo, quarto e ultimo (solaio) piano (per misure del tutto speditive si potrebbero acquisire i dati anche solamente all'ultimo piano - oltre anche al piano di "riferimento", *reference*).

counting and naming the floors

Parametri base di registrazione

Lunghezza della	10-30 minuti, a seconda del tipo di edificio e degli eventuali disturbi
registrazione	presenti
Frequenza di	50-60 Hz sono sufficienti (ma 100 Hz vanno benissimo)
campionamento	(tipicamente siamo interessati alle frequenze sino a circa 20 Hz)

Come nominare i *files*

È sempre bene dare nomi che siano informativi e di facile comprensione anche per chi non ha personalmente effettuato le misure e aiutino quindi in fase di analisi. Qui di seguito un esempio di nomi sensati e quindi utili.

EDIFICIO_ViaLAMPO3_floor2_CornerNW.SAF (o seg2) EDIFICIO_ViaLAMPO3_floor2_CornerNE.SAF EDIFICIO_ViaLAMPO3_floor8_CornerNW.SAF EDIFICIO_ViaLAMPO3_floor8_CornerNE.SAF

Se, per sfizio curiosità o dovere, farete acquisizioni vibrazionali in giornate diverse (caratterizzate da diverse condizioni meteo - un giorno quieto e privo di vento e un giorno in cui invece soffia un vento significativo) sarà interessante vedere (in termini relativi e comparati) l'aumentare dell'*ampiezza* dell'oscillazione.

Nel caso si effettuino misure su vari punti/verticali è bene specificarlo direttamente nel *file name*:

ottenendo quindi per il punto/verticale1 EDIFICIO_ViaLAMPO3_floor0_VerticalPoint1.SAF EDIFICIO_ViaLAMPO3_floor4_VerticalPoint1.SAF EDIFICIO_ViaLAMPO3_floor6_VerticalPoint1.SAF

ottenendo quindi per il punto/verticale2 EDIFICIO_ViaLAMPO3_floor0_VerticalPoint2.SAF EDIFICIO_ViaLAMPO3_floor4_ VerticalPoint2.SAF EDIFICIO_ViaLAMPO3_floor6_ VerticalPoint2.SAF Lo scopo resta sempre quello: poter fornire ad un proprio collega dati in modo indolore e chiaro senza verbose e complicate "note di campagna": nel nome del file ci deve essere tutta (o quasi) l'informazione necessaria a capire di cosa si tratta.

Alcune ulteriori raccomandazioni in sede di acquisizione:

1. Utilizzate sensori equalizzati e strumentazione che consente di ottenere dati in mm/s (non in *counts*);

2. Acquisite sempre un dato in più piuttosto che uno in meno:

3. Oltre ad un'acquisizione al "piano di riferimento", fatene sempre una anche esternamente (su suolo o asfalto che sia);

4. All'interno dell'edificio attenzione a lavatrici, lavastoviglie, impianti stereo ad alto volume, pompe (incluse quelle legate al sistema di riscaldamento, termosifoni) ecc.

5. In caso di misure sincronizzate (a volte dette *dinamiche*) verificate preliminarmente le polarità dei dati (che dipende dalla combinazione sensori-caviacquisitore);

6. Se possibile effettuate le acquisizioni in periodi di "calma assoluta" (quando vi è poca attività umana o industriale all'interno dell'edificio - in modo da evitare componenti spurie varie che possono dare poi componenti difficili da identificare come tali). Considerate quindi le ore serali e/o i week end.

7. Per fare in modo che tutto questo si realizzi, è sempre necessario chiedere la collaborazione di chi vive/lavora nell'edificio (che deve evitare di svolgere le attività di cui sopra). Se questo non è possibile, i dati raccolti possono essere contaminati da componenti che nulla hanno a che fare con le vibrazioni dell'edificio.

Nell'analisi delle vibrazioni degli edifici, l'analisi dell'HVSR non ha alcun significato (quello che interessano sono gli spettri di ampiezza non l'HVSR).

15.3 Analisi GHM e GVM (raccomandate)

Il metodo GHM è presentato nell'articolo <u>Gaussian-filtered Horizontal Motion (GHM) plots</u> of non-synchronous ambient microtremors for the identification of flexural and torsional modes of a building (Dal Moro et al., 2018) e un ulteriore esempio di sua applicazione è disponibile nel lavoro <u>Influenza della modellazione degli edifici sulla determinazione della</u> <u>loro vulnerabilità sismica</u> (Sancin, Dal Moro, Amadio, Romanelli, Vaccari, 2018.).

Tale metodo consente di identificare le frequenze di vibrazione di un edificio e di identificarne anche il modo (flessionale, torsionale o misto) a partire dai dati raccolti su due punti (angoli) dello stesso piano. La potenza ed eleganza di questo metodo risiede nel fatto che, a differenza dell'approccio classico, per distinguere il tipo di modo non è necessario che i dati (nei punti A e B) siano sincroni. È cioè possibile registrare prima i dati nel punto A e poi nel punto B.

In prima battuta è bene sintetizzare quali <u>sono i tre passi da svolgere</u> al fine di caratterizzare le vibrazioni di un edificio.

Dopo aver settato la cartella di lavoro, il nome del progetto e il tipo di analisi (dati disaccoppiati o sincronizzati verticalmente o orizzontalmente), ecco la sequenza logica delle operazioni:

1) step#1: caricare i dati eseguendo le usuali operazioni di "preparazione" del dato in modo analogo a quanto viene svolto per le analisi HVSR (eventuale ri-campionamento, pulitura dei segnali transienti ecc.);

2) step#2: effettuare l'analisi degli spettri di ampiezza utili a identificare le frequenze di vibrazione dell'edificio;

3) step#3: svolgere l'analisi GHM (*Gaussian-filter Horizontal Motion*) che consente (se i dati sono stati acquisiti nel modo appropriato) di ottenere informazioni sul tipo di moto (flessionale o torsionale) associato alle frequenze precedentemente identificate.

Esempio di analisi GHM

Nel seguito un esempio di analisi svolta per un edificio come quello della figura sopra riportata e considerando dati presi in sincrono da due terne poste nei punti P1 e P2.

Step#1 - caricamento dati

Pulitura del dato

Per pulire i dati (in modo del tutto analogo a quando si analizzano dati per analisi HVSR) è sufficiente cliccare il pulsante "**clean**":

Cliccando il pulsante "**show 3D motion**" si vanno a visualizzare i dati e ottenere delle informazioni per così dire "visuali" sul movimento al punto considerato:

Step#2 – determinazione delle eigen-frequencies di un edificio

Analisi su dati sincronizzati (verticali o orizzontali)

Si tratta qui il caso sincrono senza distinguere se di tipo orizzontale o verticale (la differenza è meramente nei ragionamenti da svolgere durante la lettura dei risultati).

Una volta caricati e puliti i dati basta cliccare sul pulsante "compute" all'interno del gruppo "Step#2: determination of vibration frequencies"-

Tra i vari dati in output riportiamo qui quelli più importanti:

Spettrogrammi delle tre componenti (per entrambi i punti di misura).

Spettri di ampiezza dei vari segmenti (la quantità dipende chiaramente dalla lunghezza della finestra di analisi) e, in rosso, spettri di ampiezza medi.

Autospettri delle tre componenti per entrambi i punti di misura: chiare tre frequenze di vibrazione che in questo sono di circa 8.3, 9.5 e 12.4 Hz.

Qui di seguito il *cross-spectrum*, le funzioni di fase e coerenza per le tre componenti (ricordiamo che la componente verticale solitamente non interessa) [riportati sia il grafico dei valori reali che di quelli normalizzai].

Confronto tra gli spettri di ampiezza dei due punti considerati (per le tre componenti) e loro differenza.

L'insieme di questi dati/analisi consente di definire con chiarezza tre frequenze di vibrazione: 8.3, 9.5 e 12.4 Hz

pag. 220

Questo terzo passo è finalizzato a comprendere il tipo di modo (flessionale o torsionale) per ciascuna delle frequenze identificate.

Tale procedura è applicabile unicamente in caso di misure raccolte su un unico piano (tipicamente alto) in due punti diversi (tipicamente due angoli estremi dell'edificio, ad esempio lo spigolo nord-est e lo spigolo nord-ovest dell'ultimo piano).

Inseriamo le frequenze precedentemente identificate nel campo (sfondo giallo) e clicchiamo il pulsante "show GHM / GVM plots".

Ecco cosa si ottiene nel caso del dataset considerato per questo esempio (in cui avevamo identificato tre frequenze di vibrazione):

Questi plot mostrano come il modo relativo alle frequenze 8.3 e 9.5 Hz è di tipo flessionale (entrambi i punti si muovono lungo la stessa direzione), mentre il modo relativo alla frequenza di 12.4 Hz è di tipo torsionale (le direzioni del movimento evidenziamo una torsione/rotazione) [si veda articolo "*Gaussian-filtered Horizontal Motion (GHM) plots of non-synchronous ambient microtremors for the identification of flexural and torsional modes of a building*" (Dal Moro et al., 2018)].

Inserendo poi l'altezza dell'edificio sarà (pulsante "*compute*" nella sezione "*Theoretical Fundamental Resonance*") vengono forniti i periodi di risonanza teorici confrontati con le curve empiriche indicate da Chopra and Goel (2000) e Hong and Hwang (2000).

Qui di seguito 2 immagini di esempio: nel primo caso il punto rosso (che rappresenta la frequenza di risonanza con la massima ampiezza del dato analizzato sta in un'area (tra le due curve empiriche) che potrebbe indicare il fatto che tale vibrazione è quella relativa al periodo fondamentale.

Nel secondo caso invece la frequenza identificata è superiore potendo indicare qualche "anomalia" (errore nelle analisi? edificio particolarmente rigido? frequenza non relativa al modo fondamentale?)

Chopra A.K. and Goel R.K., 2000. *Building Period Formulas for Estimating Seismic Displacements* Technical Note, Earthquake Spectra, Earthquake Engineering Research Institute, 16, 533-536.

Hong L-L and Hwang W-L., 2000. Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan. Earthq. Engin. and Struct. Dyn., 29, 327–337.

Se plottiamo tali frequenze su un grafico in cui si riportano anche le curve di Chopra and Goel(2000) e di Hong and Hwang (2000) vediamo come le frequenze dell'edificio approssimino i valori indicati dai primi autori.

Infine è anche possibile calcolare la direttività dell'HVSR (al piano più alto): si vede la maggiore ampiezza (e la "duplicità del picco") dell'HV lungo l'asse NS (a conferma di quanto osservato nei grafici sopra riportati).

15.3.1 Analisi GVM per ponti

E nel caso stessimo analizzando dati raccolti ad esempio su un ponte? In questo caso saranno i moti lungo i **piani verticali (Z-NS e/o Z-EW)** a fornire le indicazioni utili a definire i tipi di modi (*eigenmodes*) caratteristici del ponte/struttura in oggetto. Saranno dunque di interesse i grafici **GVM (Gaussian-filtered Vertical Motion)**, quello Z-NS e/o Z-EW a seconda del tipo di struttura e *eigenmode* considerato.

Si ricordi che in sismica e nelle vibrazioni non esistono le direzioni geografiche (NS & EW): in sismica esistono le *componenti* (Verticale, Radiale e Trasversale) e nelle vibrazioni esistono assi strutturali. Nel caso di strutture "bislunghe" si è spesso usi parlare di *asse longitudinale* (quella di massima elongazione della struttura) e *asse trasversale* (perpendicolare a essa). Il NS strumentale, per convenzione, è quello che corrisponde all'asse longitudinale.

Si studi con cura l'immagine qui sotto riportata. Quando con un geofono triassiale <u>correttamente orientato</u> si registra un *file* per vibrazioni è bene dare un nome del tipo Point1_Z_Long_Trasv.seg2 (o SAF) che lascia pochi dubbi sul punto e sul significato delle tre tracce che il file contiene.

Primo esempio: ponte metallico pedonale tipico di molte stazioni ferroviarie

In questo caso sono stati utilizzati 12 geofoni triassiali che registravano in sincrono (quindi il tipo di analisi da selezionare è "synchro horizontal"): 6 lungo un lato e 6 lungo il lato opposto (vedi immagini qui di seguito).

Nel caso del *dataset* qui considerato, evidentemente, il NS (seconda traccia del *dataset*) è la direzione/asse principale del ponte [la prima traccia è la verticale e la terza la trasversale].

L'obiettivo del lavoro è chiaramente caratterizzare il modo di vibrare del ponte (*eigenfrequencies* e tipologia di moto della particella).

Vediamo qui in estrema sintesi come è possibile procedere in modo da ottenere i dati da fornire all'ingegnere strutturale per le sue valutazioni.

Per introdurre con semplicità l'argomento e per brevità, consideriamo due combinazioni particolarmente significative di sensori: #11-#21 e #11-#14 [guardando le immagini sopra riportate si noterà che il sensore #14 si trova esattamente in corrispondenza di un pilone/vincolo mentre i sensori 11 e 21 sono in un punto molto "libero da vincoli" del ponte.

Prima fase: analisi dati #11 e #21

Tali punti (vedi immagini) si trovano ai due lati del ponte in una zona piuttosto lontana da ogni vincolo strutturale.

Le due immagini qui di seguito mostrano come il moto della particella nei due punti è fondamentalmente identico (stessa ampiezza e sincronizzati – vedi funzioni di fase che ci dicono che a 2.69 Hz il moto della particella è esattamente lo stesso [nessuno sfasamento]) e, trascurando modi di minore ampiezza, il modo caratterizzante sia a 2.69 Hz.

L'analisi dei plot GHM e GMV qui di seguito riportati mostra il tipo di moto (l'ampiezza lungo l'asse verticale è di gran lunga superiore alle limitate oscillazioni sul piano orizzontale, vedi anche spettri di ampiezza sopra riportati).

Tali caratteristiche sono chiaramente e facilmente verificabili anche grazie all'animazione dei dati (pulsante "show 3D video animation"). In particolare, se vogliamo visualizzare il moto della particella a 2.69 Hz (il modo principale) dobbiamo effettuare un filtraggio gaussiano su quella frequenza.

Per farlo andiamo nel gruppo "Gaussian filter section", fissiamo la frequenza di interesse (2.69 Hz), filtriamo i dati (pulsante "1. filter") e se ci pare tutto a posto confermiamo/accettiamo tale filtraggio ("2. accept"). A questo punto i dati in memoria sono quelli filtrati gaussianamente alla frequenza specificata.

A questo punto possiamo dunque mostrare l'animazione che ci conferma che i due punti si muovono all'unisono (perfettamente sincronizzati). Qui di seguito 2 snaps che mostrano la pressoché identicità del moto anche attraverso il movimento differenziale mostrato sulla destra (costantemente prossimo a zero).

Ricordate che con il mouse potete ruotare il punto di vista adattandolo al tipo di moto e alle componenti che desiderate porre in evidenza (se si attiva l'opzione "save vibration video" il video è automaticamente salvato nella cartella di lavoro). Per questioni di carico computazionale/grafico si raccomanda di lavorare con dati ri-campionati alla minima frequenza possibile (che nella pressoché totalità dei casi è 32 Hz – frequenza di Nyquist pari quindi a 16 Hz).

Si ricordi che per tornare ai dati "grezzi" (non filtrati) basta cliccare il pulsante "restore".

Seconda fase: analisi dati #11 e #14

Consideriamo ora due punti profondamente diversi in termini di assetti strutturali. Mentre in corrispondenza del punto#11 non vi è infatti alcun vicolo strutturale, il punto#14 si trova invece presso un pilone (vedi foto).

Anche per i punti #11-#14, le funzioni di fase (vedi immagine riportata di seguito) ci dicono che a 2.69 Hz i 2 punti si muovono in sincrono con lo stesso verso (quindi nessuna componente rotazionale).

HoliSurface[®]

Anche qui possiamo visualizzare l'animazione che pone in evidenza come la presenza del pilone presso il punto#14 vincoli il moto della particella:

Molto altro si potrebbe dire (gli *outputs* che si ottengono sono molti) ma ci si limita qui a dare il *senso* delle cose.

15.4 Analisi del damping da dati passivi

Una volta eseguite le analisi utili a definire le frequenze di vibrazione di un edificio (vedi precedenti pagine), è possibile determinare per via sperimentale il *damping* di ciascun modo identificato.

Attenzione: il *damping* cambia a seconda dell'ampiezza delle sollecitazioni. Analizzando (come comunemente si fa) i microtremori, si otterranno valori del *damping* molto bassi, ma in caso di dati raccolti durante un terremoto i valori che si otterrebbero sarebbero superiori (vedi ad esempio Ceravolo et al., 2017).

Per clienti e lavori di particolare rilevanza è possibile che la conoscenza del *damping* reale/sperimentale (anche da semplici microtremori) possa comunque rappresentare un'informazione utile all'ingegnere.

Una volta completate le analisi atte a definire le frequenze dei modi che caratterizzano il manufatto in questione, è possibile cliccare il pulsante "**compute damping**", avendo anche scelto per quale *dataset/*punto eseguite le analisi ("Point#1" o "Point#2").

Nel caso si siano svolte analisi secondo il metodo GHM (quindi avendo posizionato entrambe le terne in due punti dello stesso piano), scegliere un punto o l'altro è in genere abbastanza indifferente.

Ricordiamo che per queste analisi, HS assume che i dati caricati provengano da geofoni (quindi velocimetri).

A questo punto si sceglie la componente da considerare (NS, EW o UD) e nel campo "fn" si inserisce la frequenza del modo che vogliamo considerare. È fondamentale essere precisissimi nel farlo, usando tre decimali dopo la virgola.

A questo punto si clicca il pulsante "identify". Si andrà così ad ottimizzare la ricerca del picco del segnale attorno alla frequenza **fn** da noi indicata e verrà restituito il valore del *damping*. Nel caso siamo stati troppo vaghi nel definire la frequenza fn, è possibile inserire un nuovo (più puntuale) valore di fn e ri-effettuare il calcolo del damping cliccando il pulsante "**compute damping**".

Computo del *damping* per la componente NS (per un modo a 1.709 Hz)

Computo del *damping* per la componente EW (per il modo a 1.709 Hz)

Computo del *damping* per la componente UD (per il modo a 1.709 Hz)

Possiamo notare come, nel caso sopra riportato (ma la cosa è normale che sia così), i valori di *damping* sono di fatto gli stessi per tutte le tre componenti. Possono invece cambiare da modo a modo.

Per dettagli sul significato del damping ottenibile analizzando varie tipologie di dati vedi ad esempio Ceravolo et al. (2017) e partecipa ad uno dei nostri corsi di formazione.

Nota alle misure delle frequenze dei modi e ai rispettivi damping

Se svolte considerando dati relativi ai microtremori, i risultati relativi alle frequenze dei diversi modi e al rispettivo *damping* si riferiscono chiaramente a piccole ampiezze di "sollecitazione".

Cosa succede (tipicamente) in caso di grosse sollecitazioni quali quelle che si verificano durante un sisma?

In termini del tutto generali si osserva un aumento del *damping* (che può aumentare indicativamente dal valore di 2% [campo dei microtremori] sino a circa 5%) sia ad una diminuzione delle frequenze dei diversi modi tipici dell'edificio per un valore del tutto indicativamente pari al 10% del valore identificabile utilizzando i microtremori.

Un articolo che affronta queste tematiche è ad esempio Ceravolo et al. (2017).

Municipio di San Romani in Garfagnana: variazione della frequenza dei primi 3 modi e del *damping* del primo modo all'aumentare della PSA. Da Ceravolo et al. (2017). PSA= *Peak Structural Acceleration* registrata sulla struttura.

15.5 Analisi del damping da dati "attivi"

Prossime release

Alcuni link inerenti le vibrazioni di edifici/strutture

http://mceer.buffalo.edu/infoservice/reference_services/EQaffectBuilding.asp

http://mceer.buffalo.edu/infoservice/reference_services/buildingRespondEQ.asp

http://en.wikipedia.org/wiki/Earthquake engineering

http://fisicaondemusica.unimore.it/Risonanza negli edifici.html

http://it.wikipedia.org/wiki/Retrofit antisismico

http://www.steelconstruction.info/Floor vibrations

http://www.ingegneri.info/forum/viewtopic.php?f=8&t=22324

Per trasformare il numero di piani in altezza dell'edificio si consideri che, tipicamente e in media, un piano è di circa 3 m.

16. Spettri di risposta (RSL – Risposta Sismica Locale)

Breve e informale premessa

I reali e principali problemi della RSL così come si è andata a configurare in Italia sono presto detti:

1. molti profili V_S utilizzati sono pesantemente errati;

2. l'approccio probabilistico (PSHA) utilizzato per selezionare i sismi di riferimento è fortemente criticato da buona parte della comunità scientifica.

Dati questi problemi di fondo è del tutto inutile inseguire sofismi su, ad esempio, le curve G/Go e ritorna il detto biblico: "*filtrare il moscerino e ingoiare il cammello*".

Due ulteriori motivi di non indugiare in aspetti secondari o malamente definibili:

1. gli spettri di risposta sono definiti per un modello di oscillatore lineare SDOF (*Single Degree Of Freedom*) che è una prima approssimazione valida unicamente per edifici dalla riposta semplice;

2. il fattore di *damping* della struttura (monoliticamente fissato al 5%) è un ulteriore punto di domanda (cioè una variabile). Provando a variare il *damping* della struttura (non il *damping* degli strati del modello geologico - a loro volta parametro da fissare) da, per esempio, 3 a 7% ci si può rendere conto di come anche esso ha un peso nella determinazione degli spettri di risposta finali. Per rendersi conto di quanto il *damping* di una struttura può variare in relazione all'ampiezza dell'input si veda ad esempio Naito & Ishibashi (1996).

Si raccomanda quindi di svolgere al meglio tutto quello che si può e deve fare senza indugiare in risibili sottolineature inerenti specifici e spesso secondari aspetti.

Tra le moltissime cose spesso malamente intese vi è ad esempio l'idea che l'HVSR rappresenti la cosiddetta amplificazione di sito, cosa pesantemente inesatta tanto da semplici considerazioni teoriche quando da dati sperimentali (vedi ad esempio articolo di Perron et al. (2018) da cui è tratta la figura qui si seguito riportata in cui vi è il confronto tra la reale amplificazione sperimentale [curva SSR] e l'HVSR [come si può notare la differenza è enorme]).

Come funziona una RSL (in estrema sintesi)

La RSL richiede vengano svolte con estrema cura le seguenti tre operazioni:

1) accurata determinazione del profilo Vs

2) determinazione di una serie di "sismi di riferimento" al *bedrock* per il sito indagato

3) simulazione dell'effetto di scuotimento (al suolo e sull'edificio)

Errori in una sola di queste fase (da tenere concettualmente ben separate) conduce inevitabilmente alla definizione di spettri di risposta privi di significato o validità.

Riguardo il **primo e il terzo punto** si rimanda alle considerazioni svolte in premessa di questa sezione del manuale.

Rispetto il **punto#2** consigliamo di partecipare agli incontri da noi segnalati e di leggere ad esempio il libro di carattere introduttivo *Difendersi dal terremoto si può* (Panza e Peresan 2016) senza dare mai nulla per scontato ed evitando quindi di pensare "si fa così punto e basta".

Gli strumenti disponibili in *winMASW*[®] *Academy* e *HoliSurface*[®] si riferiscono alle operazioni di cui al punto#3 (oltre che naturalmente al punto#1).

Volendo semplificare, è come se *winMASW Academy* svolgesse le operazioni di software quali *Strata* o *Deepsoil* con il vantaggio di non dover "traslocare" da winMASW a quei software e poter fare tutti in pochi semplici e immediati click.

Sulla selezione dei sismi il discorso è piuttosto articolato (vedi dibattito sulla correttezza dell'approccio probabilistico (PSHA - *Probabilistic Seismic Hazard Assessment*) rispetto l'approccio fisico (NDSHA - *NeoDeterministic Seismic Hazard Assessment*).

Molti selezionano i sismici di riferimento utilizzando REXEL (approccio PSHA), ma tale procedura è sottoposta a serie e motivate critiche.

In questa sede non ci possiamo chiaramente occupare di questi aspetti ed è responsabilità del professionista determinare nel modo più accurato e puntuale i sismi di riferimento da caricare per la determinazione dello spettro di risposta finale (vedi <u>qui</u>).

Vediamo qui di seguito come procedere e che parametri settare.

Parametri da settare

Una volta determinato il profilo V_S corretto (in accordo con tutti i dati considerati) dal pannello di analisi a componente singola o doppia si clicca il pulsante **Site Response**:

Comparirà la seguente finestra:

Cliccando su "**input subsurface model**" è possibile caricare un modello (.mod) precedentemente salvato (di default viene caricato il modello attivo al momento in cui si accede al pannello cliccando **Site Response**).

Qui di seguito la spiegazione dei parametri da settare per ottenere lo spettro di risposta finale:

reference depth (m)

Profondità alla quale sarà posta la fondazione (in metri).

sezione "input quake(s)"

Va specificata l'<u>unità di misura</u> delle serie temporali da caricare (i "sismi di riferimento" determinati ad esempio con REXEL).

Lo *smoothing* da applicare in fase di elaborazione e il numero di *header lines* nei files che si caricano (ad ogni modo si assume che i *files* siano costituiti da 2 colonne: la prima con il tempo in secondi, la seconda con le accelerazioni).

Esempio di sisma ottenuto via REXEL (nessuna header, quindi header lines resta "0":	
	.0000000e+000 0.000000e+000 5.000000e-003 -3.2748000e-004 1.000000e-002 -6.6074000e-004 2.000000e-002 -6.6930000e-004 2.000000e-002 -6.7780000e-004 2.5000000e-002 -6.8632000e-004 3.000000e-002 -6.9493000e-004 3.5000000e-002 -7.0372000e-004 4.000000e-002 -7.1276000e-004 4.5000000e-002 -7.2215000e-004
Se invece la prima riga contesse (a mero scopo di esempio) il nome del sito e la seconda le sue coordinate, dovremmo indicare due (2) <i>header lines</i> .	
	Berlin $52^{\circ}31'00''N 13^{\circ}23'20''E$ $.0000000e+000 0.000000e+000$ $5.000000e-003 -3.2748000e-004$ $.000000e-002 -6.6074000e-004$ $.500000e-002 -6.6930000e-004$ $2.000000e-002 -6.7780000e-004$ $2.500000e-002 -6.8632000e-004$ $3.000000e-002 -6.9493000e-004$ $3.500000e-002 -7.0372000e-004$ $4.000000e-002 -7.2215000e-004$ $5.000000e-002 -7.3195000e-004$

È ance possibile cambiare l'**unità di misure dei sismi in** *input* (di *default* m/s²) in cm/s². Se lo si fa (se cioè, per qualsiasi motivo, utilizziamo serie temporali (dei sismici) in cm/s² e non in m/s², il valore di **ag** non dovrà essere modificato.

pulsante "peak acceleration"

Allo scopo di determinare i valori di **ag** per la normalizzazione dei sismi in input (stiamo chiaramente riferendoci all'approccio PSHA) cliccando su questo pulsante si aprirà la pagina INGV relativa alle mappe interattive di pericolosità sismica (<u>http://esse1-gis.mi.ingv.it</u>).

ag (g)

Nell'approccio PSHA i sismi ottenuti ad esempio tramite REXEL devono essere normalizzati ad un valore massimo di accelerazione fissato appunto da tale parametro (sulla base delle mappe di pericolosità sismica - vedi sito INGV).

Nel caso <u>non</u> si desideri normalizzare i sismi di input ad un valore massimo di accelerazione (la normalizzazione è un'operazione svolta nell'approccio PSHA che è in effetti purtroppo privo di senso fisico), basta inserire un valore pari a zero.

Ciò significa che nel caso si mantenga ag=0, durante l'elaborazione i sismi (cioè le cosiddette *time histories*) saranno tenuti così come caricati, senza alterarne i valori di accelerazione. Questo è possibile se i sismi che si caricano sono (già) riferiti al locale *bedrock* e sono stati definiti con procedure *ad hoc* (che non sono quelle della PSHA) in grado di definire l'accelerazione al locale *bedrock* andando a simulare una serie di sismi caratteristici dell'area (vedi approccio DSHA e NDSHA).

Se invece si desidera modificare i valori dei sismi caricati facendo in modo che il picco dell'accelerazione sia pari ad un certo valore (definibile ad esempio dalle mappe INGV), si deve inserire tale valore nel campo **ag** (in unità di g, cioè di accelerazione di gravità).

Se ad esempio si inserisce un valore di **ag** pari a 0.4, i sismi in input saranno scalati in modo tale che l'accelerazione di picco diventi 0.4 g per tutti i sismi caricati.

building damping (%)

È il *damping* dell'edificio rispetto a cui si intende calcolare lo spettro di risposta. Tale valore è spesso fissato al 5% ma i valori reali possono discostarsi in relazione al tipo di costruzione e alle frequenze (vedi letteratura ingegneristica specializzata).

Fattori di qualità e damping

Ricorda sempre di settare valori dei fattori di qualità che abbiano un senso (la regola empirica spesso seguita è che, grossomodo, i fattori Qs sono pari a circa il valore della Vs diviso per un fattore che può variare circa da 10 a 15 (nel software tale fattore viene indicato come *K factor*). Inoltre ricorda che:

D = 1 / 2Q

Il *damping* (D) è usualmente indicato in percentuale (quindi tale valore va moltiplicato per 100).

Esempio di elaborazione

Si noti come molte funzioni/curve sono riportate in doppio formato: in funzione della frequenza e del periodo.

Come sempre le immagini sono automaticamente salvate nella cartella di lavoro.

Sismi caricati (ampiezze originali):

Modello Vs (con indicata la profondità di riferimento), HVSR simulato (da onde di corpo e onde di superficie) e funzione di amplificazione [*SH-wave transfer function*], spettro alla profondità di riferimento (in funzione della frequenza):

Sismi normalizzati al valore di ag inserito, FFT di sismi in input, in funzione di frequenza e periodo, spettro alla profondità di riferimento (in funzione del periodo):

0

0.5

Spettri di risposta alla profondità di riferimento (in questo caso 1m dalla superficie) in funzione della frequenza (scale lineari e logaritmiche).

Spettri di risposta alla profondità di riferimento (in questo caso 1m dalla superficie) in funzione del periodo (scale lineari e logaritmiche).

1.5

 10^{-1}

0.0476

0.1

0.2

period (s)

0.5

1.6667

1

Gli spettri di risposta vengono salvati anche in una serie di files ASCII il cui nome è chiaramente indicativo del contenuto:

```
"All_Response_Spectra_Frequency.txt"
"All_Response_Spectra_Period.txt"
"Mean_Response_Spectrum_Frequency.txt"
"Mean Response Spectrum Period.txt"
```

1

period (s)

Il seguente *snapshot* riporta un esempio della figura finale che riassume i fatti principali (l'esempio è riportato da un diverso sito/dataset). Ogni grafico riporta chiaramente nel titolo e nella legenda il significato/contenuto delle curve/funzioni mostrate.

Sono riportati:

1) i valori di Vs e Qs del modello caricato;

2) le curve HVSR caricate e modellate [grafico in alto a destra];

3) in basso a destra: la *funzione di trasferimento* delle onde SH [linea rossa] insieme alle curve HVSR caricate e modellate [secondo le onde di superficie e le onde SH];

4) gli *spettri di risposta* per tutti i terremoti di riferimento caricati assieme alla curva media e a quella regolarizzata (vedi box "regolarizzazione degli spettri" nelle pagine successive) [grafico in alto al centro].

Site Response nelle recenti release di winMASW[®] Academy e HoliSurface[®]

Una volta ottenuto il profilo V_S corretto (un modello può essere considerato corretto solo se è in accordo con dati multi-componente – vedi tutti gli esempi riportati in questo manuale), cliccare il pulsante "Site Response" e accedere dunque al tool *Site Response*.

Se si clicca il pulsante "Site Response" dai pannelli delle analisi, il modello del sottosuolo e la curva HVSR vengono caricati automaticamente, ma è comunque possibile (ri)caricarli entrambi dal pannello *Site Response* (pulsanti "**upload subsurface model**" e "**upload HVSR curve**").

Ricorda che posizionando il *mouse* sopra un qualsiasi pulsante, appare una breve descrizione/aiuto riguardo al tipo di operazione che tale pulsante esegue.

Sequenza delle operazioni (per lavori sul territorio nazionale italiano):

1) Opzionale ma consigliato: caricare la foto geo-referenziata del sito [pulsante "georeferenced photo [recommended]" in alto a sinistra]: il *software* estrarrà automaticamente la *latitudine* e la *longitudine*. In alternativa, se non avete una foto georeferenziata, inserite manualmente i valori di *lat* e *long*;

2) impostare il valore del **tempo di ritorno** (che dipende dal tipo di intervento oggetto di analisi);

3) cliccare sul pulsante "**compute spectral parameters**" (in alto a sinistra), grazie al quale otterremo i parametri (**ag**, **Tc** e **F0**) utilizzati per le successive operazioni;

Nel caso in cui si lavori in un paese diverso dall'Italia, i valori di **ag**, **Tc** e **F0** sulla base delle locali norme edilizie.

HoliSurface[®]

Parametri spettrali determinati in base al tempo di ritorno (inserito dall'utente) e alla *latitudine* e *longitudine* del sito ricavate direttamente dalla foto geo-referenziata.

4) Ora, dopo aver controllato la correttezza dei parametri **ag**, **Tc** e **F0**, puoi caricare i terremoti di riferimento (riferiti al locale *bedrock*) [usa il pulsante "input quakes" nel gruppo "1. Input quake(s)"];

Ora siamo pronti per il computo: clicca il pulsante **"compute site response"** nel gruppo "2. *Site effect and Response Spectra*" del pannello.

Spettri di risposta e calcolo della *funzione di trasferimento* dell'onda SH (curva rossa nel grafico in basso a destra – questa curva è solitamente considerata impropriamente come la *curva di amplificazione*). In questo caso la profondità di fondazione (*reference depth*) è pari a 1 m.

Si noti come lo/gli spettro/i di risposta sia/siano fornito/i anche *regolarizzati* (vedi box nelle pagine seguenti).

Alcune 'linee guida' richiedono che tali simulazioni siano effettuate per un certo numero di cosiddetti *stati limite* che dipendono dalla struttura che stiamo considerando. Lo specifico *stato limite* di volta in volta considerato può essere indicato nel campo 'note' in modo che appaia nella legenda dei grafici ottenuti.

Alcune importanti note

Nel caso in cui non venga caricato alcun terremoto, lo strumento fornirà solo i risultati mostrati nel seguente *snapshot*, cioè le curve HVSR (caricata e modellata) e la *funzione di trasferimento delle onde SH*. Confronta il seguente *snapshot* con quello mostrato nella pagina precedente (ottenuto avendo caricato una serie di terremoti).

Di fatto, la *funzione di trasferimento delle onde SH* non rappresenta ciò che accade durante un terremoto reale, in quanto i fenomeni reali sono molto più complessi e dipendono dalla tipologia della faglia, dal suo azimuth rispetto al sito e molto altro. La distorsione dello scuotimento indotto dagli effetti locali è poi diversa per le onde di volume e quelle di superficie e, chiaramente, la *funzione di trasferimento delle onde SH* non può considerare le onde di superficie (vedi ad esempio Bowden & Tsai, 2017);

Ricorda che **l'accuratezza degli spettri di risposta ottenuti** dipende innanzitutto dall'accuratezza di due "parametri" chiave:

- 1) il modello del sottosuolo (valori Vs e Qs questi ultimi determinano l'attenuazione)
- 2) l'accuratezza dei terremoti caricati [cioè le scosse al *bedrock* locale].

Si deve anche sempre considerare nei dovuti termini che le variabili che di fatto sfuggono al nostro controllo sono innumerevoli ed è quindi piuttosto ingenuo (per usare un termine molto gentile) porre eccesiva enfasi su specifici aspetti. Assicurati che il tuo modello V_s (e Q_s) sia ben vincolato e ragionevole e investi un po' del tuo tempo per studiare tutti i problemi e le ambiguità dell'approccio PSHA (cioè sul modo in cui vengono scegli/creati/selezionati i "terremoti di riferimento"). Per farlo sono necessari approfonditi corsi di sismologia (tecnica), non lezioncine su come la normativa suggerisce di fare (le leggi dello Stato non han nulla a che fare con le leggi di Natura).

pag. 250

HoliSurface[®]

Se frequenti un corso/lezione/workshop sugli effetti di sito e sul computo degli spettri di risposta, fai attenzione e cerca di capire se è un corso (serio) sulla *fisica dei fenomeni* o se si tratta di un incontro sulle normative nazionali in materia. Questo è un punto cruciale: si tratta di imparare come le onde si generano e propagano (attenuano ecc.) o si tratta di spiattellare delle procedure da eseguire in ossequio a "linee guida" senza comprendere il *perché* e il *come* da un punto di vista scientifico?

Si deve sempre considerare che le "variabili sconosciute" sono innumerevoli ed è quindi piuttosto ingenuo porre troppa enfasi su aspetti singolari/specifici. Quindi assicurati che il tuo modello V_S (e Q_S) sia ben vincolato e investi un po' del tuo tempo per studiare tutti i problemi e le ambiguità dell'approccio PSHA (cioè sul modo in cui scegli i terremoti di riferimento).

HoliSurface[®]

pag. 251

Regolarizzazione degli spettri

Lo spettro di risposta finale è anche "regolarizzato" al fine di ottenere i parametri dell'approocio semplificato: F0, Td, Tc, Tb e a_{max} . Questa operazione è svolta secondo gli schemi riportati in:

Newmark N.M. and Hall W.J., 1982. Earthquake spectra and design. EERI Research Report, 82-71183, 103 pp.

Liberatore D. and Pagliaroli A., 2014. Verifica della sicurezza sismica dei Musei Statali. Applicazione O.P.C.M. 3274/2003 s.m.i. e della Direttiva P.C.M. 12.10.2007. Convenzione Arcus – DG PaBAAC Rep n. 113/2011 del 30/09/2011

Decreto n. 55 (24 Aprile 2018) e NTC 2018

Capitolo 2.5.4.3.1 degli "Indirizzi e criteri per la Microzonazione Sismica" volume of the *Dipartimento di Protezione Sismica* (*Editori* Bramerini, Di Pasquale, Naso, Severino).

Si consideri che l'operazione di regolarizzazione è di per sé discutibile in quanto altera gli spettri di risposta calcolati considerando il profilo V_S e i terremoti di riferimento. Viene (purtroppo) richiesta e fatta per facilitare il lavoro degli ingegneri che, utilizzando software di analisi non particolarmente sofisticati, non sono in grado di considerare la forma reale dello spettro di risposta calcolato, ma la sua essenza è alquanto discutibile (si altera la natura per sottometterla a inadeguatezze del pensiero/fare umano).

Si noti che quando la forma dello spettro di risposta calcolato è particolarmente complessa e irregolare, lo spettro regolarizzato può differire significativamente dallo spettro originale.

Esempio di regolarizzazione in cui lo spettro computato (cura rossa tratteggiata) è significativamente distante da quello regolarizzato (curva rossa continua). Tratto da Pagliaroli et al. (2019).

Un ulteriore esempio di regolarizzazione in cui lo spettro di partenza (cura rossa) è significativamente distante da quello regolarizzato (curva verde).

Qui sotto invece un esempio di spettro regolarizzato (curva verde) non troppo distante dal computato (curva rossa): questo accade in quanto lo spettro originale (computato) ha una forma "semplice" non lontana da quella assunta dagli schemi utilizzati per la regolarizzazione.

Vedi anche Appendice "Regolarizzazione spettro di risposta (utilities)".

17. Dati a corredo (per il proprio training)

Nella chiavetta USB contenente il *software* sono presenti alcuni *datasets* utili per il proprio training/esercizio che si trovano in una serie di sotto-cartelle della cartella principale principale "**Self_Training_Data_Dissemination**". Tra queste citiamo (ma molti altrei dataset sono riportati):

"Chapter5_Building_Vibrations_GHM_Case_Study1_3floor_building", dati vibrazionali presentati nel capitolo 5 del libro Springer del 2020

"Natissa_case_study_8_Elsevier_Natissa", caso studio #8 dal libro Elsevier del 2014

"Elsevier_book_case_study12_HS_HV_ESAC_MASW_Aquileia", caso studio #12 dal libro Elsevier

"Dissemination_HS_Eliosoft_SummerLab": un *dataset* HS+HVSR acquisito durante uno dei nostri *workshops* (sono mostrati anche i risultati delle analisi)

SURFACE WAVE ANALYSIS FOR NEAR SURFACE APPLICATIONS

– Giancarlo Dal Moro

Ulteriori casi studio e documenti sono scaricabili dal nostro *sito web* che ti invitiamo a visitare regolarmente www.holisurface.com

18. Raccomandazioni: procedure di analisi suggerite

Il software HS consente una tale varietà di analisi da rischiare di confondere ed intimidire colui che non ha una solida preparazione geofisica. Ecco quindi alcuni suggerimenti pratici rivolti in particolare ai professionisti che devono affrontare problemi legati spesso unicamente alle NTC.

Per determinare in modo solido e rigoroso il profilo verticale della velocità delle onde di taglio (sino ad almeno 30 m di profondità – e in effetti ben oltre) l'approccio che caldeggiamo con forza è dato dall'analisi congiunta onde di Love (sismica attiva) e HVSR.

Per farlo, dalla schermata principale, si deve **accedere al pannello** "**Disp + HVSR**" e procedere come segue:

1. Svolgere le 2 operazioni preliminari dal pannello principale: a) fissare la cartella di lavoro (dove sono presenti i *files* di campagna e dove saranno automaticamente salvati i *files* di output); b) scegliere il tipo di sito (in ordine di massima) oggetto di studio.

2. Caricare il file relativo alle onde di Love (che, se le operazioni sono state eseguite come consigliamo, potrebbe avere un nome del genere HF-50m-direct.SAF/seg2);

3. Calcolare lo spettro di velocità di gruppo (pulsante "Love waves: group-velocity spectrum" in basso) [gli intervalli di frequenza e velocità vanno fissati con criterio e senso];

4. Caricare la curva HVSR precedentemente calcolata;

5. Svolgere la modellazione diretta sino a che si identifica un modello che fa tornare i conti tanto rispetto alla dispersione che rispetto alla curva HVSR;

6. Cliccare "report" in modo da ottenere un rapporto sul modello identificato.

È naturalmente possibile avvalersi anche dell'inversione automatica THF+HVSR. Per farlo si deve salvare lo spettro di velocità di gruppo delle onde di Love (pulsante "save Love-wave spectrum", aprire il modulo "disp+HVSR" (in basso a sinistra), caricare sia lo spettro delle onde di Love che la curva HVSR. A questo punto si deve fissare lo spazio di ricerca a partire dal modello che meglio aderiva ai dati durante la fase di modellazione diretta (e che abbiamo avuto cura di salvare). Si carica tale modello (pulsante "starting model") e, in caso, si modificano i valori limite di Vs e spessori. A questo punto si lancia l'inversione (dettagli nella relativa sezione del manuale).

be smart, be holi

Il libro del 2023

Lezioni di sismica. Onde di volume, di superficie, sezioni 2D e amplificazioni

Analisi vibrazionali di cantiere Analisi vibrazionali per la caratterizzazione di edifici (metodo classico e GHM) 🗸

- AA.VV. (2005), Procedure Manual (Measurements Protocol & Crew Manual) Part A v.1, NATO SfP project 980857- Assessment of Seismic Site Amplification and Seismic Building Vulnerability in the Former Yugoslav Republic of Macedonia, Croatia and Slovenia,
- AA.VV. (2005), SESAME Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. Open file, 62 pp
- Albarello D. e Lunedei E., 2010. Alternative interpretations of horizontal to vertical spectral ratios of ambient vibrations: new insights from theoretical modeling. Bulletin of Earthquake Engineering 8, 519–534.
- Arai H., Tokimatsu K., 2004, *S-wave velocity profiling by inversion of microtremor H/V spectrum*. Bull. Seism. Soc. Am: 94, 53-63.
- Bonnefoy-Claudet S., Köhler A., Cornou C., Wathelet M., Bard P.-Y., 2008, *Effects of Love Waves* on *Microtremor H/V Ratio*. Bulletin of the Seismological Society of America, 98, 288–300
- Ceravolo, R., Matta, E., Quattrone, A., Zanotti, L., Fragonara L., 2017. *Amplitude dependence of equivalent modal parameters in monitored buildings during earthquake swarms.* Earthquake Engineering and Structural Dynamics, 46, 2399-2417.
- Cho I., Senna S., Fujiwara H., 2013. *Miniature array analysis of microtremors*, Geophysics, Vol. 78, KS13–KS23
- Chopra A.K. and Goel R.K., 2000. *Building Period Formulas for Estimating Seismic Displacements* Technical Note, Earthquake Spectra, Earthquake Engineering Research Institute, 16, 533-536.
- Choudhury, P.B. and Sitharam, T.G., 2009. *Ground characterization using shear wave velocity for assessment of rippability*. Journal of Mines, Metals & Fuels, 57 (10), 317-320. ISSN 0022-2755
- Dal Moro G. and Mazanec M., 2024. *Determination of the V_s profile at a "noisy" industrial site via active and passive data: the critical role of Love waves and the opportunities of multi-component group velocity analysis.* Geophysics, 89, B209-B227. <u>https://library.seg.org/doi/10.1190/geo2022-0540.1</u>
- Dal Moro G., 2023. *MASW? A critical perspective on problems and opportunities in surface-wave analysis from active and passive data (with few legal considerations)*. Physics and Chemistry of the Earth, Parts A/B/C, 2023, 103369, ISSN 1474-7065, <u>https://doi.org/10.1016/j.pce.2023.103369</u>
- Dal Moro G., Stemberk J., 2022. *Tools for the efficient analysis of surface waves from active and passive seismic data: exploring an NE-Italy perilagoon area with significant lateral variations.* <u>Earth Planets Space 74, 140. https://doi.org/10.1186/s40623-022-01698-z</u>
- Dal Moro G., 2022. Determination of the V_S profile in a noisy industrial site: further evidences about the importance of Love waves and the opportunities of the group velocity analysis. Proceedings of the 40th GNGTS (Gruppo Nazionale di Geofisica della Terra Solida) National Congress. Link: http://download.winmasw.com/documents/GNGTS2022_Dal_Moro_seismic_exploration_noisy_____industrial_site.pdf
- Dal Moro G., 2022. *MASW? Oltre la soggettività nell'analisi delle onde di superficie: velocità di fase e gruppo nella ri-elaborazione FVS di un vecchio e complesso dataset multi-componente*. Atti del 40° convegno nazionale GNGTS (Gruppo Nazionale di Geofisica della Terra Solida). Link: <u>http://download.winmasw.com/documents/GNGTS2022 Dal Moro FVS Velocita Fase e Gruppo.pdf</u>
- Dal Moro G. & Panza G.F., 2022. *Multiple-peak HVSR curves: management and statistical assessment*. Engineering Geology, 297, 106500, <u>https://doi.org/10.1016/j.enggeo.2021.106500</u>
- Dal Moro G., 2020. The magnifying effect of a thin shallow stiff layer on Love waves as revealed by multi-component analysis of surface waves. Scientific Reports, <u>https://www.nature.com/articles/s41598-020-66070-1</u> (analysed dataset included)
- Dal Moro G., 2020. On the identification of industrial components in the Horizontal-to-Vertical Spectral Ratio (HVSR) from microtremors. Pure and Applied Geophysics, <u>https://doi.org/10.1007/s00024-020-02424-0</u>

- Dal Moro G., Al-Arifi N., Moustafa S.R., 2019. *On the efficient acquisition and holistic analysis of Rayleigh waves: technical aspects and two comparative case studies*. Soil Dynamics and Earthquake Engineering, Open access: https://authors.elsevier.com/sd/article/S0267726118310613
- Dal Moro G., 2019. Surface wave analysis: improving the accuracy of the shear-wave velocity profile through the efficient joint acquisition and Full Velocity Spectrum (FVS) analysis of Rayleigh and Love waves. Exploration Geophysics, 50, 408-419 (https://www.tandfonline.com/doi/abs/10.1080/08123985.2019.1606202?journalCode=texg2)
- Dal Moro, 2018. <u>Problemi e soluzioni per la corretta definizione del profilo V_S (velocità delle onde di taglio) in studi di geotecnica e microzonazione sismica</u>. Geologia Tecnica & Ambientale, Rivista dell'Ordine Nazionale dei Geologi, ISSN 1722-0025, numero 1/2018, 43-60

- Dal Moro G., 2018. Effective Active and Passive Seismics for the Characterization of Urban and Remote Areas: Four Channels for Seven Objective Functions. Pure and Applied Geophysics. On-line: <u>https://doi.org/10.1007/s00024-018-2043-2</u>
- Dal Moro G., Weber T., Keller L., 2018. <u>Gaussian-filtered Horizontal Motion (GHM) plots of non-</u> synchronous ambient microtremors for the identification of flexural and torsional modes of a building. Soil Dynamics and Earthquake Engineering, 112, 243–255

- Dal Moro G., Al-Arifi N., Moustafa S.R., 2018. *Improved Holistic Analysis of Rayleigh Waves for Single- and Multi-Offset Data: Joint Inversion of Rayleigh-wave Particle Motion and Vertical- and Radial-Component Velocity Spectra*. Pure and Applied Geophysics, 175, 67-88. On-line version available from this link
- Dal Moro G. and Puzzilli L.M., 2017. *Single- and multi-component inversion of Rayleigh waves acquired by a single 3-component geophone: an illustrative case study.* Acta Geodyn. Geomater., 14, No. 4(188), 2017. On-line version available <u>here</u>
- Dal Moro G., Al-Arifi N., Moustafa S.R., 2017. Analysis of Rayleigh-Wave Particle Motion from Active Seismics. *Bulletin of the Seismological Society of America*, 107, 51-62
- Dal Moro G., 2016. Four Geophones for seven objective functions: active and passive seismics for tricky areas. Invited presentation and Extended Abstract for the *Urban Geophysics* workshop at the 22nd *EAGE Near Surface Geoscience* conference (Barcelona Spain, 4-8 September 2016)

- Dal Moro G., Keller L., Moustafa S.R., Al-Arifi N., 2016. Shear-wave velocity profiling according to three alternative approaches: a comparative case study. *Journal of Applied Geophysics*, 134, 112–124
- Dal Moro G., Al-Arifi, N., Moustafa S.R., 2016. <u>Assessing ground compaction via time lapse</u> <u>surface-wave analysis</u>, <u>Acta Geodyn. Geomater</u>, <u>13</u>, <u>No 3 (183)</u>, <u>249-256</u>, <u>DOI:</u> <u>10.13168/AGG.2016.0006</u>
- Dal Moro G., Keller L., Poggi V., 2015. A Comprehensive Seismic Characterization via Multi-Component Analysis of Active and Passive Data. First Break, 33, 45-53
- Dal Moro G., 2015. Joint Inversion of Rayleigh-Wave Dispersion and HVSR of Lunar Seismic Data from the Apollo 14 and 16 sites. ICARUS, 254, 338-349
- Dal Moro G., Keller L., 2015. *Optimizing the exploration of vast areas via multi-component surfacewave analysis* (Extended Abstract EAGE June 1-4, 2015 (Madrid - Spain)
- Dal Moro G., Ponta R., Mauro R., 2015. Unconventional Optimized Surface Wave Acquisition and Analysis: a Geotechnical Application in a Perilagoon Area. J. Appl. Geophysics, 114, 158-167
- Dal Moro G., Coviello V., Del Carlo G., 2014. Shear-Wave Velocity Reconstruction via Unconventional Joint Analysis of Seismic Data: Two Case Studies in the light of Some Theoretical Aspects, Extended Abstract for the IAEG (International Association for Engineering Geology and the Environment) XII CONGRESS - Turin, Sept. 15-19, 2014: <u>http://download.winmasw.com/documents/Surface Waves Joint Inversion Dal Moro Coviell o Del Carlo DISSEMINATION.pdf</u>
- Dal Moro G., Marques Moura R.M., Moustafa S., 2015, *Multi-component Joint Analysis of Surface Waves*. J. Appl. Geophysics, 119, 128-138
- Dal Moro G., 2014, *Surface Wave Analysis for Near Surface Applications*, 978-0-12-800770-9, Elsevier, 252pp

- Dal Moro G. & Keller L., 2013. Unambiguous determination of the V_S profile via joint analysis of multi-component active and passive seismic data, EAGE Near Surface 2013, Proceedings of the 19th European Meeting of Environmental and Engineering Geophysics, Bochum, Germany, 9-11 September 2013 [having received a very high score from the reviewers (during its presentation), the work was invited to be published as full paper]
- Dal Moro G., 2013. *Joint Analysis of Lunar Surface Waves: the Apollo 16 dataset.* EAGE Near Surface 2013, Proceedings of the 19th European Meeting of Environmental and Engineering Geophysics, Bochum, Germany, 9-11 September 2013 [having received a very high score from the reviewers (during its presentation), the work was invited to be published as full paper]
- Dal Moro G., Pipan M., 2012, Alcune problematicità nell'analisi delle onde di superficie e del rapporto spettrale H/V, Rivista Italiana di Geotecnica, Anno XLVI, n.2, 68-81
- Dal Moro G., Ferigo F., 2011, *Joint Inversion of Rayleigh and Love Wave Dispersion Curves for Near-Surface Studies: Criteria and Improvements*, J. Appl. Geophysics, 75, 573-589
- Dal Moro G., 2011, Some Aspects about Surface Wave and HVSR Analyses: a Short Overview and a Case Study, BGTA (Bollettino di Geofisica Teorica e Applicata), invited paper, 52, 241-259

Dal Moro G., 2012, Onde di superficie in Geofisica applicata - Acquisizione e analisi di dati secondo tecniche MASW e HVSR, Dario Flaccovio Editore, 192 pag.

- Dal Moro G., 2010, Insights on Surface Wave Dispersion and HVSR: Joint Analysis via Pareto Optimality, J. Appl. Geophysics, 72, 29-140
- Dal Moro G., 2008, *Tre divagazioni: il mito dell'inversione, MASW in Friuli, esempi di applicazione congiunta MASW-rifrazione*. Presentazione ad invito per la Giornata di studio "Monitoraggio Dinamico per la Valutazione della Sicurezza Sismica dei Ponti", Centro Internazionale di Scienze Meccaniche (CISM), Udine, 18 aprile 2007.
- Dal Moro G., 2008, V_S and V_P Vertical Profiling via Joint Inversion of Rayleigh Waves and Refraction Travel Times by means of Bi-Objective Evolutionary Algorithm, J. Appl. Geophysics, 66, 15-24
- Dal Moro G. & Pipan M., 2007, *Joint Inversion of Surface Wave Dispersion Curves and Reflection Travel Times via Multi-Objective Evolutionary Algorithms*, J. Appl. Geophysics, 61, 56-81
- Dal Moro G. & Gabrielli P., Presentazioni *Power Point* sull'analisi delle onde superficiali e il software *winMASW* presentate al GEOFLUID2006, Piacenza, 4-7 Ottobre 2006 (CD di *winMASW* – cartella *documenti*)
- Dal Moro G., Pipan M., Forte E., Gabrielli P., Sugan M., Forlin E. & Finetti I., 2005, Shear-Wave Profiling via SH Reflection Analysis and Rayleigh Wave Inversion, Riassunto Esteso per il convegno SEG (Society of Exploration Geophysicists) 2005, 75th Annual Meeting, Huston, Texas, November 2005
- Dal Moro G., Pipan M. & Gabrielli P., 2007, *Rayleigh Wave Dispersion Curve Inversion via Genetic Algorithms and Posterior Probability Density Evaluation*, J. Appl. Geophysics, 61, 39-55
- Dal Moro G., Forte E., Pipan M. & Sugan M., 2006, Velocity Spectra and Seismic Signal Identification for Surface Wave Analysis, Near-Surface Geophysics, 4, 243-251
- Dal Moro G., Pipan M., Forte E. & Finetti I., 2003. *Determination of Rayleigh wave dispersion curves for near surface applications in unconsolidated sediments.* Atti del convegno SEG (Society of Exploration Geophysicists), 73st Annual Int. Mtg. (Dallas, Texas, ottobre 2003)

- Di Giulio G., Cornou C., Ohrnberger M., Wathelet M., Rovelli A., 2006, *Deriving Wavefield Characteristics and Shear-Velocity Profiles from Two-Dimensional Small-Aperture Arrays Analysis of Ambient Vibrations in a Small-Size Alluvial Basin, Colfiorito, Italy.* Bulletin of the Seismological Society of America, 96, pp. 1915–1933
- Ewusi A., Miezah-Adams M., Klu A.K., Ansah E., Seidu J.; 2023, *Application of Holisurface Technique in MASW and HVSR Surveys for Site Characterisation at Ewoyaa, Ghana*, 7, 2616-1486, <u>http://www2.umat.edu.gh/git/index.php/git/article/view/416</u>
- Fah D., Kind F., Giardini D.; 2001, *A theoretical investigation of average H/V ratios*. Geophys. J. Int., 145, 535-549.
- Fasan, M., Magrin, A., Amadio, C., Romanelli, F., Vaccari F., and G.F. Panza, 2016. A seismological and engineering perspective on the 2016 Central Italy earthquakes. Int. J. of Earthquake and Impact Engineering, 1, 395–420.
- Gaherty, J.B., 2004, A surface wave analysis of seismic anisotropy beneath eastern North America, Geophys. J. Int., 158, 1053-1066
- Gerstoft P. & Mecklenbrauker C.F., 1998, *Ocean acoustic inversion with estimation of a posteriori* probability distributions, J. Acoust. Soc. Am., 104, 808-819
- Goldberg D. E., 1989, *Genetic Algorithms in Search, Optimization, and Machine Learning*, Addison-Wesley Publishing Company, Inc., 412 pp.
- Hasancebi, N. and Ulusay, R., 2007, *Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments*. Bulletin of Engineering Geology and the Environment, 66(2), 203-213.
- Herak M., 2008, ModelHVSR A *Matlab* tool to model horizontal-to-vertical spectral ratio of ambient noise, Computers & Geosciences, 34, 1514–1526
- Herrmann R.B., 2019. Computer Programs in Seismology. Open files
- Hong L-L and Hwang W-L., 2000. *Empirical formula for fundamental vibration periods of reinforced concrete buildings in Taiwan*. Earthq. Engin. and Struct. Dyn., 29, 327–337.
- Imai T., 1977, *P-and S-wave velocities of the ground in Japan*. Proc IX Int conf Soil Mech Found Eng 2:127–132
- Japan Road Association (JRA), 1980, Specification and interpretation of bridge design for highwaypart V: Resilient design.
- Levshin A.L., Pisarenko V., Pogrebinsky G., 1972. *On a frequency-time analysis of oscillations*. Annales Geophys, 28, 211-218.
- Lunedei E., Albarello D., 2009. *On the seismic noise wavefield in a weakly dissipative layered Earth.* Geophys. J. Int., 177, 1001-1014
- Luo Y, Xia J., Miller R.D., Xu Y, Liu J., Liu, Q., 2009. *Rayleigh-wave mode separation by high-resolution linear Radon transform*. Geophysical Journal International, 179, 254-264.
- Luo Y., Xia J., Xu Y. & Zeng C., 2011. *Analysis of group-velocity dispersion of high-frequency Rayleigh waves for near-surface applications*. Journal of Applied Geophysics, 74, 157-165.
- Madiai, C. and Simoni, G., 2004. *Shear wave velocity-penetration resistance correlation for Holocene and Pleistocene soils of an area in central Italy*. Proceedings, 2th International Conference on Geotechnical Site Characterization (ISC'2), Porto, Portugal.
- Maheswari R.U., A. Boominathan and G.R. Dodagoudar, 2010. Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai soils. Geotechnical and Geology Engineering, 28(2), 119-137
- Moura R.M., Noronha F., Almeida F. & Dal Moro G., 2012. *V_s measurements through dispersive wave methods in the urban environment of Porto (North Portugal)*, 15th World Conference on Earthquake Engineering, 24-28 September 2012, Lisbon (Portugal)

- Naito Y. and Ishibashi T. *Identification of Structural Systems from Microtremors and Accuracy Factors* (1996). Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, Paper No. 770
- Nunziata C., Natale M., Panza G.F., 2004, *Seismic characterization of Neapolitan soils*. PAGEOPH, 161, 1285–1300
- Nunziata C., 2005. *Metodo FTAN per profili dettagliati di V_s*. Geologia Tecnica e Ambientale, 3, 51-69. <u>https://www.academia.edu/25360235/Geologia Tecnica e Ambientale 2005</u>
- Ohori M., Nobata A., Wakamatsu K., 2002, *A Comparison of ESAC and FK Methods of Estimating Phase Velocity Using Arbitrarily Shaped Microtremor Arrays*, Bulletin of the Seismological Society of America, Vol. 92, No. 6, pp. 2323–2332, August 2002
- O'Neill A., Dentith M., List R., 2003, *Full-waveform P-SV reflectivity inversion of surface waves for shallow engineering applications*, Exploration Geophysics, 34, 158–173
- Park D. & Hashash Y.M.A., 2004, *Soil Damping Formulation in non-linear Time Domain Site Response Analysis.* Journal of Earthquake Engineering, 8, 249-274
- Perron V., Gélis C., Froment B., Hollender F., Bard P.-Y., Cultrera G., Cushing E.C., 2018. *Can broad-band earthquake site responses be predicted by the ambient noise spectral ratio? Insight from observations at two sedimentary basins*. Geophysical Journal International, 215, 1442–1454.
- Rahnema, H., Mirassi, S. & Dal Moro, G., 2021. *Cavity effect on Rayleigh wave dispersion and P-wave refraction*. Earthq. Eng. Eng. Vib. 20, 79–88. <u>https://doi.org/10.1007/s11803-021-2006-y</u>
- Rix G.J., Lai C.G., Spang A.W. Jr., 2000. *In Situ Measurement of Damping Ratio Using Surface Waves.* Journal of Geothecnical and Geoenvironemanteal Engineering, 126, 472-480
- Robertsson, J.O.A., Pugin, A., Holliger, K., Green, A.G., 1995. *Effects of near-surface waveguides on shallow seismic data*. 65th SEG, Meeting, Houston, USA, Expanded Abstracts, 1329–1332.
- Rosa-Cintas S., Galiana-Merino J.J., Molina-Palacios S., Rosa-Herranz J., García-Fernández M., Jiménez M.J., 2011. Soil characterization in urban areas of the Bajo Segura Basin (Southeast Spain) using H/V, F–K and ESAC methods. Journal of Applied Geophysics, 75, 2011, 543–557
- Roth, M., Holliger, K., 1999. *Inversion of source-generated noise in high-resolution seismic data*. The Leading Edge 18, 1402–1406.
- Sancin L., Dal Moro G., Amadio C., Romanelli F., Vaccari F., 2018. <u>Influenza della modellazione</u> <u>degli edifici sulla determinazione della loro vulnerabilità sismica</u>. Extended abstract for the GNGTS 2018 assembly (gngts.ogs.trieste.it), lavoro vincitore del premio AGLC 2018
- Safani J., O'Neill A., Matsuoka T., Sanada Y., 2005. Applications of Love Wave Dispersion for Improved Shear-wave Velocity Imaging. Journal of Environmental and Engineering Geophysics, 10, 135–150
- Schnabel, P.B., Lysmer, J. and Seed, H.B., 1972. SHAKE A computer program for earthquake analysis of horizontally layered sites. Earthquake Engineering Research Center, University of California, Berkeley, Report No. EERC 72-12.
- Stesky R.M., 1978, Experimental compressional wave velocity measurements in compacting powders under high vacuum - Applications to lunar crustal sounding. In: Lunar and Planetary Science Conference, 9th, Houston, Tex., March 13-17, 1978, Proceedings. Volume 3. (A79-39253 16-91) New York, Pergamon Press, Inc., 1978, p. 3637-3649.
- Tokimatsu, K., Tamura, S., Kojima, H., 1992. *Effects of Multiple Modes on Rayleigh Wave Dispersion Characteristics*. Journal of Geotechnical Engineering, ASCE, 118, 10, 1529-1543.
- Tokimatsu K., 1995, *Geotechnical Site Characterization Using Surface Waves*, Proc., First Int. Conf. on Earthquake Geotechnical Eng., pp. 1333-1368.
- Tonn R., 1991, The Determination of the Seismic Quality Factor Q from VSP Data: a Comparison of Different Computational Methods, Geophysical Prospecting, 39, 1-27

- Kohler A., Ohrnberger M., Scherbaum F., Wathelet M., Cornou C., 2007, *Assessing the reliability of the modified three-component spatial autocorrelation technique*, Geophys. J. Int. (2007) 168, 779–796
- White R.E., 1992. The accuracy of estimating Q from seismic data. Geophysics, 57, 1508-1511
- Zhang S.X. & Chan L.S., 2003. *Possibile Effects of Misidentified Mode Number on Rayleigh Wave Inversion*. J. Appl. Geophysics, 53, 17-29

HoliSurface [®] - utilities	X
HS	HS utilities
-m-	managing active data
managing passive data	vertical stack
TCEMCD	assemble VF/EX with HF
double MAAM	compare 2 datasets
concatenate HVSR (SAF)	compare N datasets
pre-processing	average velocity spectrum
SEG to SAF conversion	
2D and 3D data	post-processing a miscenariea
upload & show GRD file	qc/Nspt-Vs
2D velocity contouring	elastic moduli
3D project/visualization	Vs30 at foundation
	scientific calculator
	area percentage

APPENDICI

Appendice A: moduli elastici

Dalla schermata principale di *HoliSurface*[®] è disponibile una *utility* per il calcolo di una serie di moduli elastici a partire dai valori di V_S, V_P e densità. Le velocità devono essere espresse in m/s, la densità in gr/cm³ mentre i moduli calcolati (modulo di Young, modulo di taglio, modulo di compressione e modulo di Lamé λ) sono in MPa (MegaPascal) (modulo di Poisson e rapporto V_P/V_S sono adimensionali).

Si ricordi che la V_P stimata da analisi MASW non è assolutamente da considerare (e dipende in larga misura dal valore di Poisson che si imposta prima di lanciare l'inversione). L'unico modulo che possiamo considerare come una buona stima del valore reale è il *modulo di taglio* (che non dipende dalla V_P).

L'utilità di questa *utility* sta nel fatto che considerando le V_S ricavate dall'analisi delle onde di superficie e le V_P stimate da studi a rifrazione/riflessione possiamo in qualche misura definire con una qualche approssimazione i vari moduli.

winMASW: calcolo moduli	elastici		
- Input		T	
VS (m/sec):	600		
VP (m/sec):	1000		
Densità (gr/cm3):	2.1		
		Calcola	Reset
- Moduli elastici	0.21875	Calcola	Reset
- Moduli elastici	0.21875	Calcola	Reset
- Moduli elastici Poisson: Modulo di Young (MPa):	0.21875 1843	Calcola	Reset
- Moduli elastici Poisson: Modulo di Young (MPa): Modulo di taglio (MPa):	0.21875 1843 756	Calcola	Reset
- Moduli elastici Poisson: Modulo di Young (MPa): Modulo di taglio (MPa) Modulo di compressione (MPa)	0.21875 1843 756 1092	Calcola	Reset
- Moduli elastici Poisson: Modulo di Young (MPa): Modulo di taglio (MPa) Modulo di compressione (MPa) Modulo di Lamé (MPa)	0.21875 1843 756 1092 588	Calcola	Reset

Si ricordi che questi, provenendo da misure effettuate con metodi sismici, <u>sono tutti</u> <u>moduli dinamici e *non* statici</u> (gli ingegneri sono in genere interessati a questi ultimi). Mentre per materiali molto rigidi la differenza non è drammatica, su materiali teneri la differenza può raggiungere anche 1 ordine di grandezza.

Le formule per esprimere i moduli in funzione di V_S , V_P e densità:

Modulo di Poisson (adimensionale)	$\left(V_{P}^{2}-2V_{S}^{2}\right)/\left[2\left(V_{P}^{2}-V_{S}^{2}\right)\right]$
Modulo di Young (in Pa)	$\rho V_s^2 (4-3k^2)/(1-k^2)$
Modulo di Taglio (in Pa)	$ ho V_S^2$
Modulo di Lamé λ (in Pa)	$\rho V_{s}^{2}(k^{2}-2)$
Modulo di Compressione (in Pa)	$\rho V_s^2 (k^2 - 4/3)$

dove:

 $k = V_P / V_S$ (adimensionale)

 ρ = densità (Kg/m³)

Vs e VP = velocità onde di taglio e compressionali in m/s

Chiaramente per convertire valori espressi in Pascal (Pa) in valori in MegaPascal (MPa) è sufficiente dividere il numero per 10^6 (Mega = 1 milione)

Appendice B: formula di Stesky

Tramite la formula considerata, che per semplicità chiameremo di Stesky in quanto riportata in una sua pubblicazione (Stesky, 1978) consente di determinare la velocità "efficace" (risultate) nel caso si abbia a che fare con un mezzo composto da 2 materiali (ad esempio ghiaie costituite da ciottoli immersi in una matrice sabbiosa).

La formula è semplicemente la seguente (ed è richiamabile dal modulo "Stesky's equation" presente nel pannello principale tra le *utilities*):

$$\frac{1}{\mathrm{V_m}} = \emptyset \frac{1}{\mathrm{V_A}} + (1 - \emptyset) \frac{1}{\mathrm{V_B}}$$

in cui V_m è la velocità "efficace" reale del mezzo "misto", mentre V_A e V_B sono le velocità del materiale A e B, essendo \emptyset la frazione di volume del materiale A.

HoliSurface[®]

Appendice C: creazione sezioni 2D

Per acquisire dati utili alla ricostruzioni di profili 2D da acquisizioni *HoliSurface* una possibile geometria di acquisizione è riportata nell'immagine qui di seguito.

In questo caso l'asse dello "stendimento" HS è mantenuto perpendicolare rispetto la linea del profilo 2D che si desidera ricostruire.

In altri casi è possibile tenerlo parallelo (classico approccio *roll along*) [per comprendere quale sia la soluzione migliore vieni ai nostri incontri formativi].

In *winMASW[®] Academy* e in *HoliSurface[®]*, tra le varie utilities è anche disponibile uno strumento per la creazione di sezioni 2D a partire da diversi profili verticali.

Il suo utilizzo avviene grazie alla creazione di un semplice "project file" da salvare come semplice file ASCII (.txt) come quello mostrato ad esempio qui di seguito

HoliSurface[®]

winMASW® - Surface Waves & Beyond	-				
vww.winmasw.com	utilities				
managing active data	managing passive data				
vertical stack	TCEMCD				
compare 2 datasets	concatenate data				
multiple-dataset filtering	concatenate HVSR				
	concatenate HVSR				
combine 3C data combine 2 datasets ?	concatenate HVSR				
combine 3C data combine 2 datasets ? pre-processing	post-processing & miscellanea				
combine 3C data combine 2 datasets ? pre-processing SEG to SAF conversion	post-processing & miscellanea elastic moduli Vs30 at foundation				
combine 3C data combine 2 datasets ? pre-processing SEG to SAF conversion 2D and 3D data	concatenate HVSR post-processing & miscellanea elastic moduli Vs30 at foundation Stesky's equation				
combine 3C data combine 2 datasets ? pre-processing SEG to SAF conversion 2D and 3D data 2D GPS positioning	concatenate HVSR post-processing & miscellanea elastic moduli Vs30 at foundation Stesky's equation calculator [in HS]				
combine 3C data combine 2 datasets pre-processing SEG to SAF conversion 2D and 3D data 2D GPS positioning 2D velocity contouring	concatenate HVSR post-processing & miscellanea elastic moduli Vs30 at foundation Stesky's equation calculator [in HS] area percentage				

Esempio di project file (scaricabile anche da internet - vedi oltre)

```
N16 - profile#1
2
404.8000
          404.2000 404.4000 405.2000 405.4000
                                                   405.8000
                                                              405.9000
406.3000 406.7000 407.2000 406.9000 407.6000 409.2000 409.7000 410.4000
411.5000 412.4000 414.5000 417.7000 424.1000
0 50 93 145 194 242 293 348 397 445 492 538 597 647 693 740 785 821 888 933
model1.mod
model2.mod
model3.mod
model4.mod
model5.mod
model6.mod
model7.mod
model8.mod
model9.mod
model10.mod
model11.mod
model12.mod
model13.mod
model14.mod
model15rep.mod
model16.mod
model17.mod
model18.mod
model19.mod
model20.mod
```

Sulla **prima riga** è riportato il nome del progetto o della sezione in questione La **seconda riga** non ha al momento (*release* 7.1) alcun utilizzo (ma tale valore non va comunque assolutamente rimosso).

La terza riga riporta la topografia (l'altezza slm di ciascun punto considerato) [in caso non abbiate la topografia, inserite semplicemente il numero 0 (zero)]

La <u>quarta riga</u> riporta la posizione (il punto) di ciascun modello (di seguito riportato)

Di seguito vengono poi riportati tutti i nomi dei profili Vs (salvati nel files .mod)

Attenzione: i modelli (files .mod) devono avere tutti lo stesso numero di strati.

Nell'esempio sopra riportato, ad esempio, abbiamo a che fare con una sezione 2D costruita sulla base di 20 punti (il primo profilo Vs è relativo al punto 0, il secondo al punto 50 e così via).

Tutti questi files devono trovarsi nella stessa cartella del progetto stesso.

Il progetto e i dati di cui sopra (che si riferiscono alle immagini di seguito riportate) sono scaricabili dal seguente indirizzo: <u>http://download.winmasw.com/data/2Dsection.rar</u>

Il file progetto da aprire e il file "NAGRA16_2Dprofile.txt"

Una volta caricato il file coi dati dei profili, all'interno del gruppo "depth" compare la profondità dell'interfaccia (orizzonte) più profonda. L'utente deve quindi selezionare la massima profondità da utilizzare nella visualizzazione del profilo 2D (di default è proposto un valore pari alla profondità della più profonda interfaccia + 2 metri) e la velocità massima rispetto a cui definire la scala dei colori.

Va inoltre definita la % di *smoothing* laterale.

Si suggerisce di giocare un po' con questi tre parametri e vedere l'effetto che si ottiene. È poi possibile definire se visualizzare o meno i singoli profili (attiva o disattiva il *checkbox* "*show profiles*" (vedi immagini qui sotto) e se il profilo si riferisce a V_S o V_P.

Si noti come nel file da dare in pasto è possibile in effetti specificare <u>qualsiasi</u> quantità da "contourare" in sezione. Potete quindi costruire sezioni 2D di qualsiasi dato (basta che sia organizzato secondo il formato indicato nel box "Formato del file").

Se si attiva l'opzione "*show also topography*" e nel file di progetto è indicata l'altezza per ciascun punto di misura (vedi terza e quarta riga del file progetto), verrà mostrata un'immagine come la seguente:

Durante i calcoli necessari apparirà una finestra che non va rimossa (attendete che i calcoli siano terminati):

Se si attiva l'opzione "*show positions of the single profiles*", si andranno ad evidenziare i singoli profili verticali da cui vengono poi interpolati i valori intermedi.

Tutte le immagini mostrate sono automaticamente salvate (nella cartella di lavoro) ma è anche possibile salvare manualmente qualsiasi immagine secondo diversi formati grafici dalla toolbar: "File -> Save".

Attivando l'opzione "log scale (3D plot)", si andrà a plottare le velocità secondo una scala logaritmica (la cosa permette di evidenziare talune variazioni laterali - nell'esempio qui sotto riportato in superficiale, al centro della sezione si nota una zona di torbe con velocità particolarmente basse).

I punti verdi sono le posizioni di misura.

Ulteriore esempio dall'Australia

Dati gentilmente concessi da Nick Schofield

Le analisi di uno degli 11 *shots* considerati nella ricostruzione del profilo 2D presentato nelle precedenti pagine

20 30 40 frequency (Hz)

Appendice D: strumento N_{SPT} - V_S

Con questo *tool* è possibile convertire dati penetrometrici (per ora il valore di N_{SPT} ma in futuro anche di q_c) in V_S secondo alcune relazioni empiriche pubblicate.

Il *tool* è piuttosto semplice e intuitivo (vedi *snapshot* qui sotto). Le quattro relazioni (equazione 1, eq.2, eq.4 e eq.4utilizzate) sono rispettivamente quelle di:

eq. 1: Imai (1977)

- eq. 2: JRA (1980)
- eq. 3: Maheshwari et al. (2010)

eq. 4: Hasancebi and Ulusay (2007)

				HoliSur	face® - N	spt-Vs t	ool						-		×
															r
HS -/~-	upload														
site name:	Wien												sand	*	
Nspt:				10 15 17	21 25 32 3	85 40 45 3	25 26 27	28 37							
depth (m):	0.5	1	1.5 2	2.5	3 3.5	4	4.5	5	5.5	6	6.5	7			
	save				open w	orking fol	der					cor	npute & s	show]

Imai T., 1977, *P-and S-wave velocities of the ground in Japan*. Proc IX Int conf Soil Mech Found Eng 2:127–132

Japan Road Association (JRA), 1980, *Specification and interpretation of bridge design for highway-part V: Resilient design*.

Maheswari R.U., A. Boominathan and G.R. Dodagoudar (2010). *Use of Surface Waves in Statistical Correlations of Shear Wave Velocity and Penetration Resistance of Chennai soils*. Geotechnical and Geology Engineering, 28(2),119-137.

Hasancebi, N. and Ulusay, R., 2007, *Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments*. Bulletin of Engineering Geology and the Environment, 66(2), 203-213.

Questo *tool* sarà presto aggiornato e arricchito, dando all'utente la possibilità di inserire i propri valori utili a stabilire un qualche rapporto tra dati penetrometrici e V_S.

Appendice E: strumento comparazione dati attivi (SAF/seg2)

Tra le varie *utilities* è anche disponibile uno strumento per la comparazione di 2 *datasets* **HS** (attivi) ["compare 2 *datasets*"].

Questo può essere interessante nel caso si voglia verificare la "somiglianza" di un'acquisizione *diretta* e una *reverse* (fatta ad esempio invertendo sorgente e geofono) o verificare la somiglianza di due *datasets* acquisiti sullo stesso (con identici parametri di acquisizione) in due momenti diversi (analisi *Time Lapse*).

È sufficiente caricare i due *datasets* and poi cliccare "show/compare the 2 *datasets*".

Qui di seguito un secondo esempio: il confronto tra un'acquisizione VF e una HF. Attenzione che questo tool produce diversi grafici, alcuni con le ampiezze reali (*actual*) e altri con le ampiezze normalizzate (per valutare i tempi di arrivi).

È chiaro che per comprendere le ampiezze reali di debbano considerare i grafici che riportano le ampiezze reali (*actual amplitudes*).

Come inevitabile e facilmente prevedibile, si nota molto chiaramente come l'ampiezza della traccia T (trasversale) sia molto maggiore nel caso di acquisizione HF (fatta appunto per generare onde SH – e quindi di Love - di buona qualità). Viceversa, durante un'acquisizione HF le ampiezze delle tracce Z e T sono decisamente minori.

Appendice F: tool di conversione dati da formato seg a SAF

Il *tool* di conversione da formato seg a SAF (già presenti nelle precedenti release) è stato fortemente migliorato.

Ora è possibile inserire:

1) l'<u>unità di misura</u> (in merito consultare le note relative al proprio sismografo/sistema di acquisizione);

2) l'offset (per acquisizione attive di tipo HoliSurface);

3) <u>note</u> di campagna (utile sia per acquisizioni passive - tipo HVSR - che per qualsiasi altra tipologia di dati) [le note sono chiaramente inserite nel file SAF ottenuto e mostrate da winMASW/HoliSurface nel momento in cui il file SAF viene caricato - ad esempio nel modulo HVSR].

È anche possibile definire un <u>fattore moltiplicativo</u> (i dati vengono moltiplicati per tale numero e quindi salvati nel file SAF).

Attenzione: in *winMASW*[®] e *HoliSurface*[®], il modulo HVSR consente di caricare i dati anche in formato seg2 e non è quindi necessario fare la conversione del formato da seg2 (il formato più comune della sismica) a SAF.

HS	承 winMASW® - HoliSurface® - con	verting seg/segy data to SAF	- 🗆	×
m	working folder	dataset: SSR30min.seg2		
HoliSurface 6.0	input file	total time: 1799.992 s		
	✓ resample to about 62Hz [16 ms]	sampling: 8 ms		
	1 UD (vertical) channel	number of channels: 24		
	2 NS (norizontal) channel 3 EW (horizontal) channel	number of samples: 225000		
	Counts V 1 multiplicative factor	offset (m):		
	show selected traces	notes: good coupling, sunny, no wind	save &	exit
		notes to add to the	SAF file	

Appendice G: *tool* per lo *stack* (ottimizzato)

Tra gli strumenti/moduli utili a gestire dati di carattere attivo, vi è anche quello relativo alla possibilità di effettuare lo *stack verticale* in studio.

Di elementare utilizzo, si devono caricare contemporaneamente tutti gli *shots* di un'acquisizione (la selezione multipla si ottiene mantenendo premuto il tasto *ctrl*).

Verranno "steccati" (somma mediata sul numero di shots) tutti gli shots caricati.

Al fine di rimuovere automaticamente *shots* dal basso rapporto S/N (*Signal-to-Noise*), viene anche calcolato il valore del coefficiente di correlazione tra la traccia media e lo specifico *shot*. Se il valore è inferiore ad un valore indicato dall'utente (il valore di default può essere chiaramente modificato), tale *shot* viene scartato.

Questo è utile nel caso si debba gestire una notevole quantità di *shot* (svariate decine), altrimenti è preferibile scegliere personalmente quali *shot* tenere (caricare).

Più alto il valore del coefficiente di correlazione che imporrete, più ci sarà selezione degli shot "piu' chiari".

Non esagerate e considerate che se abbiamo effettuato correttamente il processo di acquisizione (con un adeguato numero di shots - mai scendere sotto un valore di 5, da considerare come un valore minimo), uno *shot* mal-venuto generalmente non va ad inficiare significativamente la qualità delle tracce stack.

Ricordate di dare <u>sempre</u> un nome con significato fisico e geometrico ai dati, in quanto questo facilita tutte le operazioni (il software riconosce se un dato rappresenta le onde di Love - *file* HF - o Rayleigh - *file* VF).

Esempio di stack (ordinario) di sei shots

Nel caso avessimo alzato il valore del coefficiente di correlazione minimo tollerabile, una o più delle tracce sarebbero state rimosse e, assieme al dato staccato in modo classico (considerando cioè tutti gli *shots*), si sarebbe automaticamente generato un file "optimized" (creato senza tener conto delle tracce con un coefficiente di correlazione inferiore a quello da noi fissato).

Nelli recenti *release* del software, lo *stack* è stato ottimizzato con l'allineamento dei singoli *shots*. Questo può risultare utile in quanto il "tempo zero" identificato dal segnale di trigger può essere leggermente diverso per diversi shots. La procedura mira ad ottimizzare l'allineamento e ottenere dunque una maggiore qualità del dato (vedi figure successive).

zoom dei singoli *shots* e delle tracce ottenuto con procedura di *stack* (in questo caso stiamo considerando la traccia/componente T): nel pannello superiore le tracce originali e lo stack standard, nel pannello inferiore lo stack ottimizzato dopo l'allineamento delle singole tracce/shots.

Questa operazione viene eseguita anche durante l'estrazione e lo *stack* degli shot (attivi) realizzati nell'ambito della **procedura di acquisizione ibrida** (si vedano i dettagli nelle sezioni "Due modalità per acquisire dati HS+ HVSR" e "Acquisizioni ibride: estrazione dati attivi ed elaborazione dati passivi HVSR").
Appendice H: alcuni esempi di quello che puoi fare con HS (piccoli casi studio in siti complessi)

Il problema di base affrontato e risolto dal software *HoliSurface*[®] (negli svariati moduli/metodologie di analisi implementati in esso) è rappresentato dall'ambiguità che l'analisi di un solo "*observable*" (oggetto di analisi) inevitabilmente porta con sé (vedi ad esempio il libro della Springer del 2020, in cui si separano due tipi/famiglie di ambiguità intrinseche).

Tramite l'analisi congiunta di diversi "oggetti" si va proprio a risolvere tali possibili ambiguità (vedi schema concettuale riportato qui di seguito).

Qui di seguito alcuni brevissimi esempi di applicazioni possibili con HS.

Esempio#1: un caso urbano [HS+HVSR]

Lavorare in condizioni logisticamente complicate (centro urbano con limitate possibilità di movimento e impossibilità di fermare il traffico).

Indagine sismica basata sulla dispersione delle onde di superficie (velocità di gruppo) e la sua analisi secondo l'approccio FVS (*Full Velocity Spectrum*) [*HoliSurface* - HS].

Nello specifico si sono analizzate entrambe le componenti dell'onda di Rayleigh (componente Z e R) (acquisizione attiva) congiuntamente al rapporto spettrale H/V (acquisizione passiva).

Principali parametri dell'acquisizione HS:

offset: 30 m; stack: 10

Lavoro del Geol. Enrico Bordini (Spoleto).

Esempio#2: un piccolo bacino circondato da colline calcarenitiche

HS: Z+R+RPM (sismica puramente attiva)

MAAM

L'impennarsi della curva di dispersione sotto i 4 Hz è dovuta alla presenza del *bedrock* evidenziato chiaramente anche dall'analisi HS (Z+R+RPM).

I due "picchi" della curva HVSR sono in realtà degli artefatti dovuti a segnali industriali che appaiono chiarissimi dall'esame degli spettri di ampiezza e funzioni di coerenza riportate qui di seguito:

Questo significa che, a causa di complessi fenomeni di interazioni di segnali di carattere industriali la curva HVSR non rappresenta in nessun modo l'amplificazione di sito (questo sito e questi dati vengono illustrati in modo molto approfondito ed esaustivo durante i nostri incontri).

Come definire quindi la reale frequenza di risonanza di sito? Vedi prossima sezione dedicata al SSR (*Standard Spectral Ratio*).

Esempio#3: un sito di difficile accesso (pendio di collina)

Problema: lavorare in condizioni complicate, lungo il pendio di un'area collinare.

Indagine sismica basata sull'analisi della dispersione (velocità di gruppo – in questo caso delle componenti Z e R dell'onda di Rayleigh) secondo l'approccio FVS (*Full Velocity Spectrum*), congiuntamente all'HVSR e alla curva RPM.

Principali parametri di acquisizione HS: offset: 22 m; stack: 6

Tracce HS registrate con relativi spettri di ampiezza calcolati automaticamente all'atto di caricare le tracce sismiche (file di formato segy, seg2 o SAF).

Qui di seguito la modellazione congiunta degli spettri Z e R delle velocità di gruppo unitamente alla curva RPM per lo studio dettagliato degli strati più superficiali.

Evidenti un paio di componenti industriali che sono rimosse/attenuate automaticamente (vedi, nel pannello inferiore, la curva verde ottenuta tramite il tool di rimozione semiautomatica di componenti industriali).

HoliSurface®

Di seguito la modellazione congiunta degli spettri Z e R delle velocità di gruppo unitamente all'HVSR (per lo studio degli strati profondi).

Esempio#4: SSRn [primo esempio]

Per prima cosa dobbiamo ricordare che **l'HVSR non rappresenta l'amplificazione di sito** (si studi con attenzione Perron et al. 2018 e/o il nostro libro uscito per la Springer nel 2020). In questo caso una terna è posta nel punto/sito del bacino di cui si vuole stimare l'amplificazione (in modo empirico) e l'altra sull'affioramento roccioso presente ai bordi del bacino stesso (in cui chiaramente si assume che non vi sia amplificazione).

Project name test save vibration videos	from Velocity to Acceleration
C Type of analysis non-synchronous data	open working folder
data uploading and processing site/sensor #1 (reference) site/sensor #1 (reference)	, , , , , , , , , , , , , , , , , , ,
save inverse of current spectral ratio upload compensation curve remove compensation curve	
computation window length (s) 20 1. Spectral Ratio [SR] window length (s) 20 max. freq. (Hz) 20 Smoothing 20 + v 1	
compute St/SD apply the compensation curve direct.Mtyrotation show synchro data	
comparing data GPS position Empirical Fundamental Resonance 1. height (m): 18 compute 2. GPS	

Le analisi SSRn (o SSR) sono effettuate nel dominio delle frequenze e in quello dei tempi:

Appare evidente come la massima amplificazione si verifichi attorno ai 2.3 Hz (quanto accade lungo l'asse verticale non è in genere di primario interesse e l'attenzione deve innanzitutto andare a quanto accade lungo le due direzioni orizzontali).

Attenzione: poiché si stanno qui studiando i microtremori, l'ampiezza del rapporto spettrale (che, lungo gli assi orizzontali, in questo caso risulta pari a circa 16) non può essere messo in diretta relazione all'effettiva amplificazione in caso di sisma. Per questioni di non-linearità della risposta il valore dell'amplificazione in caso di sisma sarà molto verosimilmente minore ma la frequenza sarà quella identificata tramite analisi SSR. La determinazione analitica del valore di amplificazione sarà possibile tramite adeguate analisi RSL.

Esempio#5: SSRn [secondo esempio]

Le prime tre immagini riportate mostrano il pannello di analisi e l'ubicazione dei due siti una volta caricati i due files sismici (formato seg2, segy2 o SAF) e le due foto geo-referenziate scattate tramite GOPRO o *smartphone* (vedi pertinente sezione di questo manuale). In questo caso i dati (di una decina di minuti cadauno) sono stati acquisiti in rapida sequenza (prima il sito#1 e poi il sito#2).

sito#2 di cui si vuole valutare l'amplificazione (dei microtremori) rispetto al sito roccioso di riferimento (sito#1 sopra mostrato – *reference*).

HoliSurface®

Una volta puliti i dati [in modo da ottenere delle serie temporale espressione dei microtremori di fondo al netto di possibili localissimi eventi transienti] e cliccato il pulsante "**compute SR** / **SD**" (avendo optato per l'opzione SR – cioè *Spectral Ratio*) otteniamo una serie di analisi/figure. Le tre immagini riportate in questa pagina rappresentano il confronto dei dati nel *dominio del tempo* (i grafici possono essere facilmente compresi considerando le quantità indicate nel titolo e lungo gli assi di ciascun grafico). Poiché in questo caso abbiamo deciso di lavorare focalizzandoci nell'intervallo di frequenze 1-20 Hz, tale intervallo è usato anche per filtrare i dati (mostrati nel dominio del tempo).

I due grafici sopra riportati mostrano come, considerando i dati filtrati nell'intervallo 1-20 Hz, il moto della particella nel sito#2 abbia un'ampiezza di gran lunga maggiore rispetto quanto verificato nel sito#1 di riferimento (roccioso – **ref**).

pag. 306

I grafici riportati in questa pagina rappresentano il confronto dei dati nel *dominio delle frequenze* (di più chiara interpretazione). Sono comparati gli spettri di ampiezza delle tre componenti e, nell'ultima immagine (il cuore di tutto), è presentato il confronto tra il rapporto spettrale della componente H (orizzontale) e l'HVSR del sito#2 (quello di cui si intende valutare l'amplificazione dei microtremori). Il confronto è fatto considerando sia un grafico con scala verticale lineare (in basso sulla sinistra) che logaritmica (in basso a destra). Si raccomanda di fare molta attenzione alle scale e alle componenti indicate.

La curva magenta è semplicemente la curva media tra HVSR e Spectral Ratio. Si raccomanda di studiare l'articolo di Perron et al. (2018) e/o di partecipare ai nostri incontri formativi.

Esempio#6: determinazione profilo V_S in caso di *bedrock* superficiale

In questo esempio si riporta un esempio di analisi svolta considerando unicamente dati attivi (in quanto la roccia è presente ad una profondità relativamente modesta).

Ricordatevi sempre di effettuare una foto geo-referenziata con il vostro *smartphone* (vedi relativa sezione di questo manuale): il vostro report si arricchirà di questo tipo di immagini.

Nel seguito si considerano i dati attivi relativi alle sole onde di Rayleigh analizzando congiuntamente gli spettri di velocità di gruppo delle componenti Z e R unitamente alla curva RPM.

offset: 25 m

Considerato il limitato valore dell'offset è possibile utilizzare sorgenti di modesta energia: un martello da carpentiere da 2 kg o anche un martello da geologo sono sufficienti ma in questo caso è bene abbondare con lo *stack* (non meno di 10).

www.winmasw.con

יישאיאשאייאאיי

Qui di seguito il risultato dell'inversione congiunta (automatica) Z+R+RPM considerando l'opzione "full output" che fornisce tutti i sei modelli "migliori". Per i dettagli tecnici vedi il seguente articolo (*open access*):

On the efficient acquisition and holistic analysis of Rayleigh waves: Technical aspects and two comparative case studies (Dal Moro G., Al-Arifi N., Moustafa S.R., 2019), Soil Dynamics and Earthquake Engineering 125, 105742, https://doi.org/10.1016/j.soildyn.2019.105742

pag. 309

Profili V_S dei sei modelli "migliori" (unità del Sistema Internazionale).

Profili V_S del modello medio e "migliore" [minimum distance model] considerando i feet invece dei metri.

Esempio#7: definizione profilo V_S da analisi congiunta MAAM + HVSR per un sito con ridottissimo spazio a disposizione

In questo caso, il limitato spazio disponibile (vedi foto sopra) impone necessariamente l'approccio MAAM (*Miniature Array Analysis of Microtremors*) + HVSR (che, incidentalmente, può essere utilizzato anche nel caso in cui si abbiano spazi maggiori). La presenza di forti variazioni laterali (evidenziate da svariate penetrometrie effettuate intorno all'edificio di cui si doveva valutare le cause di alcuni cedimenti differenziali) è responsabile della "instabilità" dello spettro di velocità (le diverse permutazioni dei canali producono spettri di velocità di fase leggermente differenti).

Sotto è riportato lo spettro di velocità di fase medio (componente Z - raggio 1.4 m):

Infine la modellazione congiunta della dispersione da analisi MAAM e della curva HVSR:

Esempio#8: profilo V_S in una zona complessa (vicino alla foce di un fiume) attraverso l'analisi delle componenti Z e R delle onde di Rayleigh (velocità di gruppo) e l'HVSR

Ricordiamo che il metodo HS [*HoliSurface*] consiste nell'analisi FVS [*Full Velocity Spectrum*] degli spettri di velocità di gruppo ottenuti dai dati attivi multi-componente registrati da un singolo geofono a 3 componenti posto ad una certa distanza (in questo caso 50 m) dalla sorgente. La curva HVSR è ottenuta con i dati passivi registrati dallo stesso geofono.

Si noti che la metodologia FVS non richiede alcuna personale interpretazione (cioè soggettiva) degli spettri di velocità.

Quindi: un solo geofono a 3 componenti per un massimo di sei *osservabili* [*observables*] utili per vincolare completamente il profilo Vs e superare le altrimenti inevitabili ambiguità che si avrebbero nel caso considerassimo un solo "oggetto di analisi".

In questo caso abbiamo a che fare con le componenti verticale (Z) e radiale (R) delle onde di Rayleigh insieme all'HVSR, che è la curva HVSR media computata da due curve HVSR ottenute in due punti diversi (al centro dell'array e alla fine dell'*array* [cioè la stessa posizione utilizzata per l'acquisizione dei dati attivi HS]).

Prima di tutto clicchiamo il pulsante "**disp + HVSR**" dal pannello principale del software HS. Ora carichiamo le tracce HS e la curva HVSR media precedentemente calcolata (vedi pertinente sezione del manuale). Successivamente calcoliamo gli spettri delle velocità di gruppo delle onde di Rayleigh (pulsante "**Rayleigh waves: group-velocity spectra**" nella parte inferiore del pannello) e otteniamo ciò che è mostrato nella figura qui sotto riportata. Poi giochiamo un po' con la modellazione diretta e modifichiamo i valori di V_S e di spessore (e, se necessario, di Poisson) in modo da ottenere un'accettabile coerenza tra i dati di campagna e i sintetici (modellati) [vedi gli strumenti nella parte destra del pannello].

Una volta ottenuto un buon (ma non perfetto) modello possiamo entrare nel pannello di inversione automatica a 3 "*observables*" tramite il pulsante "**3-obs inversion**" (in basso a destra) [vedi successiva figura].

Qui carichiamo la foto geo-referenziata del sito, fissiamo i parametri di inversione e infine lanciamo la procedura di inversione [pulsante "**RUN**"].

Le figure seguenti riportano il risultato finale nel caso in cui scegliamo l'opzione "semplice" [vedi il menu a popup "**simple-full**" nella parte inferiore del pannello].

Esempio#9: determinazione proprietà dispersive della componente Z attraverso metodo ESAC [in winMASW[®] Academy] e confronto tra metodo MAAM [in HoliSurface[®]]

Si tratta in entrambi i casi di lavorare con dati passivi. La matematica relativa ai due metodi è radicalmente differente e si riflette in una serie di punti caratterizzanti:

- l'ESAC impone stendimenti molto ampi (in termini estremamente sintetici possiamo dire che lavora con le "lunghezze d'onda") e un significativo numero di canali e la possibile presenza di "imperfezioni" in alcune delle tracce non inficia significativamente il risultato [qualche traccia "rumorosa" non rappresenta un problema];
- 2) la MAAM [implementata nel software HoliSurface[®] HS] richiede array circolari con un limitato numero di canali (triangoli o pentagoni con geofono centrale) e un raggio estremamente piccolo rispetto le esigenze dell'ESAC (siamo nell'ordine di un paio di metri rispetto le svariate decine dell'ESAC). La qualità dei dati deve essere vicina alla perfezione (non sono ammesse approssimazioni vedi manuale HoliSurface[®] e letteratura di riferimento).

L'immagine riportata qui sotto mostra un confronto tra lo spettro di velocità di fase ottenuto da ESAC e da MAAM per un sito test (si considera qui la componente Z). Si può notare la sostanziale identicità delle velocità ottenute (sono anche indicati i limiti di validità del dato legati alla geometria delle rispettive acquisizioni).

Si considerai con adeguata attenzione che (in entrambi i casi) ciò che si ottiene è la *curva effettiva* (<u>non</u> il modo fondamentale). Inoltre, poiché le aree in gioco sono molto diverse, non si deve trascurare il fatto che mentre l'ESAC riporta una dispersione media su un'ampia area (svariate decine di metri), la dispersione da MAAM si riferisce ad una porzione molto locale/puntuale (il raggio è di pochi metri per le più comuni applicazioni). Il metodo ESAC è applicabile anche per le componenti R e T (vedi strumenti **PS-MuCAA**

in winMASW[®] Academy) mentre allo stato dell'arte il metodo MAAM è di fatto applicabile solo alla componente Z dell'onda di Rayleigh.

Esempio di *array* triangolare per acquisizione MAAM: tre geofoni ai vertici del triangolo ed uno centrale all'interno del dispositivo AREA51 (triangolo rosso) che aiuta a disporre rapidamente i 4 geofoni sul campo. I geofoni utilizzati devono avere ottime prestazioni ed essere <u>esplicitamente</u> testati *ad hoc* per MAAM. Subito alla sinistra dell'AREA51 è anche posto il triassiale HOLI3C utilizzato qui per determinare I'HVSR. Tutti i geofoni sono collegati al sismografo ottenendo quindi un file (passivo) di 7 tracce facilmente gestito dal software di analisi HS [quando tale file viene caricato nel modulo HVSR si selezioneranno solo le tracce relative al triassiale, mentre quando lo stesso file è caricato nel modulo di analisi MAAM si selezionano le 4 tracce relative ai 4 geofoni verticali].

In *HoliSurface*[®] assieme all'analisi MAAM è possibile eseguire anche l'analisi SPAC che, seguendo logiche del tutto analoghe all'ESAC, ha un *range* di validità (delle frequenze) estremamente limitato rispetto la MAAM e può servire unicamente a verificare/confrontare le velocità di fase ottenute attraverso MAAM solo alle più alte frequenze [vedi pertinente sezione del manuale *HoliSurface*[®]].

Esempio#10: determinazione profilo V_S in ambito urbano: analisi congiunta HS+HVSR

Qui di seguito un'inversione congiunta (automatica) Z + R + HVSR per un sito urbano caratterizzato da ghiaioni e conglomerati che, sappiamo, rischiano di genere dati molto complessi nel caso si utilizzi l'approccio standard multi-offset MASW (a velocità di fase).

Due foto georeferenziate del sito (un parcheggio in centro urbano).

I dati: HVSR e spettri velocità di gruppo delle componenti Z e R.

Risultato finale: dati di campagna e dei due modelli considerati nella rappresentazione "simple". La congru3enza tra dati di campagna e risultati è evidente.

Analisi statistica dei valori di Vs30 e Vs equivalente per i modelli del fronte di Pareto.

Profili V_s dei due modelli più importanti: quello a distanza minima dal punto utopico (*minimum-distance model*) e quello medio (*mean model*). I profili sono mostrati sia con scala verticale lineare che con scala logaritmica (per enfatizzare gli strati più superficiali).

Profili Vs in unità "anglosassoni" (foot e foot/second).

Esempio#11: determinazione profilo V_S in sito dominato da ghiaioni e conglomerati per un edificio Universitario: analisi congiunta HS+HVSR

Qui di seguito un'inversione congiunta (automatica) Z + R + HVSR per un sito in cui la presenza già in superficie di ghiaioni e conglomerati rischia di genere dati molto complessi nel caso si utilizzi l'approccio standard multi-offset MASW (a velocità di fase).

Per l'inversione congiunta qui presentata si è scelta l'opzione "**simple**" (scegliendo l'opzione "**full**" si ottengono molti più dettagli sulle performance, la cui lettura richiede corsi di approfondimento).

HVSR e spettri velocità di gruppo delle componenti Z e R. Nel sito si sono acquisiti 2 HVSR: uno presso la sorgente ed uno presso il punto ricevitore durante l'acquisizione dei dati attivi HS. Poiché i due HVSR si sono dimostrati praticamente identici, per l'inversione congiunta non si è proceduto a calcolarne la media.

Nelle tre immagine sopra riportate una sintesi delle analisi statistiche svolte nel corso dell'inversione congiunta.

Risultato finale: dati di campagna e dei due modelli considerati nella rappresentazione "simple". La congru3enza tra dati di campagna e risultati è evidente.

Profili V_s dei due modelli più importanti: quello a distanza minima dal punto utopico (*minimum-distance model*) e quello medio (*mean model*). I profili sono mostrati sia con scala verticale lineare che con scala logaritmica (per enfatizzare gli strati più superficiali).

Profili Vs in unità "anglosassoni" (foot e foot/second).
pag. 324

Nel caso nel gruppo *outputting* venga attivata anche l'opzione "site response" (vedi prima immagine riportata per questo caso studio) verrà automaticamente calcolata la *funzione di trasferimento* delle onde SH (curva rossa nel grafico in basso a sinistra della seguente immagine):

Esempio#12: determinazione frequenze proprie, eigenmodes e valori del *damping* per un edificio storico

Grazie alla metodologia GHM (Dal Moro et al. 2018; Sancin et al. 2018), si è andati a caratterizzare un edificio comunale che dovrà essere sottoposto a un'importante ristrutturazione, tanto di carattere estetico che strutturale. L'edificio (di forma regolare) è costituito da 3 piani (piano terra e due ulteriori piani) e due terne <u>HOLI3C</u> sono state poste a due angoli all'ultimo piano in modo da ottenere dati sincroni.

Nel seguito, per convezione, si chiama EW l'asse di maggiore elongazione dell'edificio (direzione circa N15W-S15E) e NS l'asse "corto" (perpendicolare al precedente).

Terna **HOLI3C** all'angolo NE. Una seconda terna era posta all'angolo SE.

HoliSurface[®]

Spettri d'ampiezza per le tre componenti nei due punti di misura (point#1 e #2): evidenti quattro frequenze proprie [3.62, 4.06, 4.76 e 5.79 Hz].

Spettrogrammi per le tre componenti nei due punti di misura (point#1 e #2) [evidenti le 4 frequenze precedentemente evidenziate].

Funzioni di coerenza e spettri si ampiezza medi (con scala lineare e logaritmica) per il punto#1: ancora evidenti le frequenze proprie che il metodo GHM poi applicato consente di definire come *torsionali* o *flessionali*.

Due *snapshot* della video animazione GHM [quindi sul piano orizzontale NS-EW] per il modo *torsionale* (evidente dal moto reciproco presso i due punti di misura) a 4.76 Hz.

Snapshot della video animazione GHM per il modo *flessionale* (evidente dall'identico moto dei due punti di misura) a 4.07 Hz.

Computo del damping per il modo (torsionale) a 4.76 Hz (componente NS).

Le analisi spettrali e GHM eseguite hanno consentito di definire le seguenti principali frequenze proprie (*eigen frequencies*):

Frequenza (Hz)	Eigenmode (tipo di modo)	damping (%)
3.62	flessionale (asse EW)	1.88
4.07	flessionale (asse NS)	1.57
4.76	torsionale	1.28
5.79	flessionale (asse EW)	2.16

Per ulteriori esempi di analisi vibrazionali su strutture (edifici e ponti), vedi la sezione del manuale dedicata.

Appendice I: equipaggiamento di campagna - una check list

Qui di seguito una *check list* di quanto necessario in campagna per lavorare con accuratezza e rilassatezza.

La lettera **A** e **P** indicano la sismica *Attiva* (metodo HS e possibili acquisizioni Multi-canale e offset per dati MASW) e *Passiva* (HVSR, MAAM e acquisizioni vibrazionali).

Necessità		
Sismografo o, per meglio dire, unità A/D	A+P	\checkmark
Cavo/cavi sismici suggerito il cavo <i>HoliSurface</i> del nostro sistema integrato HS	A+P	\checkmark
Geofono triassiale	A+P	\checkmark
Geofoni verticali (incluso il geofono trigger) [per MAAM minimo 4]	A+P	\checkmark
Prolunga trigger (100 m) [per il <i>nostro</i> sistema HS non necessaria]	А	\checkmark
Martello (5 -10 kg, a seconda degli obiettivi e del sito)	А	\checkmark
Piastra (per acquisizioni VF) e traversina (per acquisizione HF)	А	\checkmark
Cavetto sismico per il trigger [nostro sistema HS]	А	\checkmark
PC portatile di campagna	A+P	\checkmark
Power bank (ulteriore fonte di energia per il PC)	A+P	\checkmark
Cordella metrica	A+P	\checkmark
Dispositivo AREA51 [per acquisizioni MAAM]	Р	\checkmark

Accessori (opzionali)	
Secondo geofono triassiale (per misure vibrazionali dinamiche e SSR)	\checkmark
Supporti di metallo (tripodi) per acquisizioni su asfalto	\checkmark
Antenna USB GPS	\checkmark
Chiavetta USB (per trasferimento dati acquisiti)	\checkmark
Libretto di campagna + penne e matite	\checkmark
Smartphone (con App per effettuare foto georeferenziate)	\checkmark
Coltellino multiuso (<i>Swiss Army Knife</i>)	\checkmark

Ricorda che da noi puoi trovare il <u>sistema integrato HS</u>, lo strumento (*sistema di acquisizione*) <u>ideale</u> per poter fare tutto quello che puoi fare con *HoliSurface*[®] e poter anche accedere in modo naturale anche al mondo multi-canale/offset (sismica a rifrazione/riflessione, MASW in Rayleigh e Love, ReMi, ESAC multicomponente eccetera).

Per informazioni sul nostro sistema HS: holisurface@winmasw.com

Appendice L: ottenere dati in mm/s con i nostri strumenti

Innanzitutto è necessario comprendere quando è o non è necessario che i dati acquisiti siano in unità fisica (mm/s è la soluzione migliore), sempre ribadendo che acquisire tutti i dati sempre e comunque in mm/s è una sana e buona abitudine.

HVSR: non necessario (ma sempre utile)

Dati per l'analisi della dispersione (MASW, ESAC, ReMi, MFA/FTAN, HS, MAAM): non necessario

Analisi vibrazionali su edifici: estremamente utile (consigliatissimo)

Analisi vibrazionali da cantiere (UNI/DIN): assolutamente necessario

Sono due i momenti in cui si deve essere attenti a effettuare le necessarie operazioni:

1) durante l'acquisizione

2) in fase di caricamento dei dati nel software HS

Vediamo qui di seguito come svolgere correttamente le operazioni sia durante l'acquisizione che durante il caricamento dei dati.

1. Acquisizione

Vedi documentazione fornita con il nostro sistema di acquisizione. Qui di seguito le caratteristiche dei nostri geofoni.

Geofoni a singola componente (vedi targhetta sul cavo del geofono):

- modello C1: 0.82 V/cm/s

- modello C: 0.92 V/cm/s
- modello B1: 0.29 V/cm/s

- modello *Geospace-Eliosoft* (blu) [raccomandato per la MAAM, molto utile anche per l'ESAC]: **0.89 V/cm/s**

- modello HL-3: 0.6 V/cm/s

2. Caricamento dei dati in HoliSurface®

Se avete acquisito i dati secondo le indicazioni di cui sopra, al momento di caricare il file seg2 una finestra di dialogo vi chiederà l'unità di misura dei dati.

Holőurfaca 🖲 & wir/MASW 🖲 - Horizontal-to-Vertical Sp	etral Rais (H/SR)	- 0
🕼 272 🕅 🖉 20 45 🖓 🖉 🖉 🙈 🙈		
show data reset	2017-11-11_12-45-cascata-AlmostNOwater-inizia_con_4_elicotteri.seg2 (sampling: 250Hz, length: 19.9999min)	open working folder
64 Hz v new tequency resample		show location
also 2 - XV conculation	i select fie ×	field notes
remove events Not Ref. 5 🗸 clean axes	(c → → ↑ → This PC → data (i) → BUCSOFT → Dati → Correnza, HV_Torrente, Torre, River, acquas → sito1 v ⊗ Search sito1 ρ	
23 window length (s) Min. freq.: 0.5Hz	Organise * Newfolder 🔢 * 🗔 🔞	
15 ampitude threshold	Plane Date -	
2 HVSR threshold	Desktop 2017-11-11_12-45-cascata-AlmostNOwater-inisia_con_Alelcotteriseg2 11/11	
15% w spectral sneeting (hongular window)	Ucounteads #	
Perfore motion, all HVSRs and video	Decements #	
Compute Compute	la OraDrine #	your commen
continuity	Pictures #	
20 motion seve video show 30 motion	merusk 73	
-	teme_malysis	default axes
directivity analysis	video:	
trequencies to highlight 1.0 5.0 12.0 H2 Compete	Desptes No preven sussaure.	
Save- optionitil save HVSH as it is	G OnDry	
	the PC	
save HV carve (as it is)		
save - option#2 picking HV curve	Internet (Construction)	
pick HV curve save picked HV		
200 average Vs (m/s)		
20 depth of the bedrack		
1000 Vs of the bedrock	File name: 2017-11-11,12-45-cascuta-AlmostNOwster-initia, con,4, efectiteri seg2 v SAF/seg2 formats (Assumed fo v	
dean	Open Caricel	
highlight a frequency	4	
drawhighlight 10 Hz		
HatSurfare® B wiebWGW® - Herinostal-las-Simiral Sp	To model the HVSR (also jointly with MASW or ReMIESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2)	and the saved HV curve
Helforter® S artMWW - Henretal-to-Sector 10	To model the HVSR (also jointly with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2)	and the saved HV curve
Hel Carters [®] Star MAXA - Homorad-Ascience 1 (p S 252 al (M) / 2 (R) (R) (R) (R) (R) Show State	To model the HVSR (also jointly with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrum'a, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) ame: bats (2015) p @ ①③ n 🔜 > St	cad the saved HV curve
Halfarter® S webWW# - Hermotoleter/Werral (p S525 all (M) (f_2) (R) (R) (R) (R) (R) show also show also reset staget (pathod) declamate (f_2) (R) (R) (R) show also reset staget (pathod) declamate reset	To model the HVSR (also jointly with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) a=== Units (19750 p) @ ①② n ₩ > 3]	aad the saved HV curve
Interface the Structure Contract of Structur	To model the HVSR (also jointly with MASW or ReMIESAC data), save the HV curve, go to the "Velocity Spectrum/a, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) arres Units (1755) p ≥ ②③ n I III > SI	aad the saved HV curve
Historius & BrachWOAR - Horenoldeo Jenical (p State and Art a	To model the HVSR (also jointly with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) under take 1956 P 2 2 2 1 m M > 3	and the saved HV curve
Hitforders BisenbWOK* - Homental-te-chemical ferroretal-te-chemical ferroreta-te-chemical ferroretal-te-chemical ferroretal-te-chemical ferr	To model the HVSR (also jointly with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) arrest lobs (2005) arrest lobs (2005) arrest lobs (2005)	aad the saved HV curve
101/Service** Streambl/SCA** 1000000000000000000000000000000000000	To model the HVSR (also jointly with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) were: lobs (1955) ≥ ≥ ③ ② n M → SL	ead the saved HV curve
Hat Conferent StreamsMARCAR - Harmonitad Association of State State	To model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) www. bab (1950) > a @@@ n M → St	and the saved HV curve
Half Carters & Sur MAXAR - Hermonical des Cantral Ege States States Max Region Control (Second Second Seco	To model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) w=== isbe (1950 ▶ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २ २	and the saved HV curve
Helf Carters ¹⁰ Stand MCGAR - Hermondules Samed Eq. States 1 (Second States) - Hermondules Samed Eq. States (Second States) - Hermondules Samed Eq. States (Second States) - Hermondules Samed Eq. (Second States) - Hermondules (Second States) - Hermondules (Second States) - Hermondules - Hermondules (Second States) - Herm	to model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrum/a, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) were: late (1950) ≥ ③ ③ n	and the saved HV curve
Interfaceture & SuurMACAR - Honorental des Vernet for States and States - Honorental des Vernet States - Honorental des States - States - States States - States - States - States - States - States States - States - St	To model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) were lobe (NVSE ≥ 3 3 0 1 1 1 1 5 3	and the saved HV curve
Interface of the analysis of the second of t	to model the HVSR (also jointy with MASW or ReMEESAC data), save the HV carve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) P ≥ 2 2 1 n M > 3	ad the saved HV curve
Hard Sarders = 8 & webMVGC = - Harden and Ano Jammer B Show data Show data	to model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumia, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) preve totic 1965 preve totic 1965 prev	and the saved HV curve
Heldowitze ¹⁰ StructMVGA ¹⁰ - Horem-tol-to-Dentrol Fee State of the sector of the s	To model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumite, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) were: loss (>000 m M > SA 	ad the saved HV curve
	To model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumite, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) were: bas: picking were: bas: pickin	and the saved HV curve
Holf Carters® Standbollow List Carters® Standbollow List Stat all List Stat all List Carters® Standbollow L	to model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrum/a, Modeling & Picking" panels and uph Appri/seleziona il file (formato seg2) were: Unit (MSC) > 2 2 2 2 1	and the saved HV curve
	To model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumite, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) were: Unit: [0050] > ○ ○ □ □ ■ ● ○ ○ □ □ ■ ● ③	and the saved HV curve
	to model the HVSR (also jointy with MASW or ReMEESAC data), save the HV curve, go to the "Velocity Spectrumite, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) were: Units (MOS) > ○ ○ □ □ ■ > ③	and the saved HV curve
	The model the HVSR (also jointy with MASW or ReMEESAC data), save the HV carve, go to the "Velocity Spectrumite, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) P P 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the saved HV curve
	to node the HYSR (also jointy with MASW or ReMEESAC data), save the HY carve, go to the "Velocity Spectrumite, Modeling & Picking" panels and uph Appri/Seleziona il file (formato seg2) were: Unit (Sec. 9055) ■ ■ ③ ③ n ■ > ③	and the saved HV curve
	te node the HYSR (also jointy with MASW or ReMEESAC data), save the HY carve, go to the "Velocity Spectrumite, Modeling & Picking" panets and uph Appri/Seleziona il file (formato seg2) were: Use: protei >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	and the saved HV curve
Helf Carters & SumMACCA - Hermondules Cannot Eq. State and the Carters A sumMACCA - Hermondules Cannot A summary and the Carters A summary and the c	to note the HYSR (also jointy with MASW or RAMEESAC data), save the HY carve, go to the "Velocity Spectrumite, Modeling & Picking" panels and yet Appri/Seleziona il file (formato seg2)	and the saved HV curve
	trede the HYSR (also jointy with MASW or RAMEESAC data), save the HY carve, go to the "Velocity Spectrumite, Modeling 4 Picking" panels and que Appri/Seleziona il file (formato seg2) were loss prove > ○ ○ □ □ ■ > ③	ad the saved HV curve
	trede te te YSR (de lo jointy with MASW or ReMEESCA data), save the Ydraw, go to the "Velocity Spectrumite, Modeling 4 Picklerg" panete and qed	ad the saved HV curve
	treate the tYSR (also jointy with MAXY or Raket SAC data), save the Y vaccuty spectrum v, Modeling 1 P toking" panete and value Appri/Sepleziona il file (formato segs) were the type: P ● O O T ● A ●	and the saved HV curve
	treate the type (also pointy with MAXY or Rathel SAC data), save the Yourse, go to the "Voicely Spectrum", Modeling 1 Proteing" parete and red	and the saved HV curve
	to the HVSR (also jointy with MAXY or Raket SAC data), save the HV cave, go to the "Valocity Spectrum", Modeling 1 Proteing" panets and que Apprint Sector	and the saved HV curve
Holf Cartery® Strandbollow Holf Cartery® Strandbollow List S25 List Image: Strandbollow <	<pre>two the type is a provide the type is a full of the type is a provide the type is a</pre>	and the saved HV curve
	<pre>trade the t+ YSE (deb jointy with MASW or Reletic SAC daily, save the HY caves, go to the "Velocity Spectrum", dedeling 4 Packing" pack and qed Appri/Secleziona il file (formato secs) ***********************************</pre>	ad the saved HV curve

componente UD (verticale), NS (o radiale) e EW (o trasversale)

Definisci l'unità di misura del dato.

Nel caso tu stia utilizzando in nostro sistema di acquisizione seguendo correttamente le procedure di acquisizione (vedi sezione precedente), selezione l'opzione evidenziata nello *snapshot* sopra riportato e otterrai i dati in mm/s.

Con tale opzione in pratica il dato viene moltiplicato per 1000 ottenendo valori rappresentativi della velocità in mm/s.

Unità di misura con nodi SmartSolo

Anche con nodi **SmartSolo** (che ELIOSOFT distribuisce per l'Italia) è possibile ottenere dati in *m/s* (da tradurre in *mm/s* all'atto di caricare i dati). Per farlo si utilizza il software **SoLoPro** secondo le modalità che illustriamo durante i nostri incontri formativi *ad hoc*.

pag. 334

Appendice M: cenni sul sistema di acquisizione *HoliSurface*[®] (acquisitore, cavo sismico e geofono triassiale da noi forniti)

Per indagini HS, HVSR o misure vibrazionali con un singolo geofono triassiale (HOLI3C):

- 1) Connetti il connettore (femmina) del cavo sismico HoliSurface[®] al connettore (maschio) del sismografo (canali 1-12)
- 2) Connetti il geofono HOLI3C alla fine del cavo sismico (connettore femmina del geofono agganciato al connettore maschio al termine del cavo sismico)

Vedi anche il seguente *video tutorial*: https://youtu.be/hqjJvAxL6xQ

Ricorda che se desideri acquisire dati attivi per la tecnica HoliSurface[®] [HS] la freccia dell'adesivo sul geofono deve puntare verso la sorgente!

 Ora, lancia il software di acquisizione (precedentemente installato) e utilizzalo per definire i parametri di acquisizione desiderati (ricordati che se hai connesso in modo corretto il solo triassiale HOLI3C [per raccogliere dati HS, HVSR e/o vibrazionali], dovrai attivare solo i canali 1 2 e 3).

Così facendo le tre tracce che otterrai saranno rispettivamente: la componente Z (verticale) sulla traccia 1, la componente R (radiale, o NS) sulla traccia 2 e T (trasversale, o EW) sulla traccia 3.

Due brevi note

a. Nel caso desideri acquisire semplicemente dei dati passivi (ad esempio HVSR o vibrazionali su un edificio/struttura o per misure di cantiere - vedi libro "ACQUISIZIONE E ANALISI DI DATI SISMICI E VIBRAZIONALI PER STUDI DI CARATTERIZZAZIONE SISMICA E GEOTECNICA"), puoi connettere il geofono HOLI3C direttamente al sismografo (senza il cavo sismico!). Se lo connetti al connettore 1-12 dovrai (come precedentemente visto) attivare i canali 1 2 e 3 (che saranno, come visto anche nel caso si usi il cavo sismico HS, rispettivamente la componente Z, R (o NS) e T (o EW). Se invece lo connetti al connettore 13-24, dovrai attivare i canali 22, 23 e 24 che (del tutto specularmente) saranno ora le componenti T R e Z. In altri termini, se conetti il geofono HOLI3C al connettore 13-24, le tre tracce che otterrai saranno rispettivamente: componente T (prima traccia), R (seconda traccia) e Z (terza/ultima traccia).

HoliSurface[®]

b. In effetti, è possibile collegare il geofono HOLI3C direttamente al sismografo (senza il cavo sismico HS) anche nel caso si desideri effettuare un'acquisizione HS molto "corta" (con *offset* di indicativamente 2-4 m - utile per definire le velocità degli strati più superficiali). Osserva con cura l'immagine (esempio) della seguente foto: il geofono triassiale HOLI3C (sulla sinistra) è collegato direttamente al sismografo, mentre sulla destra si trova la sorgente e il geofono *trigger* (in questo caso l'*offset* è di 3.7 m – l'analisi congiunta dei dati attivi e dell'HVSR consentirà di investigare senza significative ambiguità i primi 10-30 m).

Appendice N: gestire e sfruttare il cavo HoliSurface

Per comprendere l'utilità del cavo sismico HS da noi fornito, è disponibile il seguente video introduttivo ad un'**acquisizione HoliSurface**: <u>https://youtu.be/hqjJvAxL6xQ</u>

Un rude utilizzo di campagna mette alla prova qualsiasi componente elettrica/elettronica e qualsiasi saldatura. Nell'eventualità che il vostro cavo HS (quello da 9+3 o da 12 canali) mostri evidenze che un qualche canale è "andato", si riporta qui di seguito lo schema per le connessioni dei PIN. In questo modo, un qualsiasi elettricista sarà in grado di verificare e sistemare un eventuale problema, risparmiandovi il tempo per inviarlo a noi. Di seguito lo schema dei PIN nel caso del cavo 9+3.

Il significato dovrebbe essere chiaro a qualsiasi elettricista/elettrotecnico: i PIN relativi al geofono triassiale sono i 24-23 (componente verticale/UD), 22-21 (componente radiale/NS) e 20-19 (componente trasversale/EW).

Se notiamo che, quando colleghiamo il geofono triassiale al connettore terminale del cavo HS 9+3, il canale EW (trasversale) non dà segni di vita, questo è verosimilmente dovuto al fatto che il PIN 20 e/o 19 si sono scollegati.

Per sistemare la cosa si deve innanzitutto provare ad aprire il connettore di fine cavo (quello con il connettore *maschio*) e verificare che uno dei fili (il 20 e/o il 19) sia in effetti scollegato (in quel caso basterà ri-effettuare la saldatura).

In seconda battuta (se su quel connettore sembra essere tutto a posto – tutti i PIN sono cioè collegati), si può verificare la stessa cosa sul connettore della parte opposta del cavo (il connettore *femmina*).

È evidente che, <u>prima di effettuare queste operazioni sul cavo, si sarà innanzitutto collegato</u> <u>il geofono triassiale direttamente al sismografo</u> (senza utilizzare il cavo sismico HS 9+3). Se tale collegamento mostrasse che vi è un problema sul canale EW, sarà chiaro che il problema dei PIN non riguarda il cavo sismico ma il cavetto/connettore del geofono triassiale (rispetto al quale ci si comporterà nello stesso modo).

Ottenere in modo semplice un *dataset* multi-offset (per analisi delle velocità di fase - che molti chiamano ancora MASW) con il nostro sistema di acquisizione base

Il sistema HS "base" comprende il geofono triassiale HOLI3C e 4 geofoni a componente singola (quelli verticali sono utilizzati per la MAAM, ma possiamo anche equipaggiarci con geofoni orizzontali in modo da poter acquisire le componenti R e/o T nel caso di sismica multi-offset). Il tutto è comunque facilmente racchiudibile in uno zaino.

Colleghiamo il geofono HOLI3C alla fine del cavo sismico *HoliSurface*[®] (vedi ad esempio il *video tutorial* introduttivo a HS) e i 4 geofoni a componente singola (in questo caso quelli verticali) a 4 canali del cavo stesso, come nello schema riportato nella figura di seguito riportata (per la nomenclatura si vedano i volumi pubblicati per la Flaccovio nel 2012 e 2019 – dx è la *distanza intergeofonica* e *mo* l'*offset minimo*). Il cavo sismico *HoliSurface* va dunque poi collegato al blocco 1-12 del sismografo.

Attenzione: se stiamo utilizzando un cavo sismico HoliSurface[®] da 9 canali e abbiamo collegato il triassiale HOLI3C alla sua terminazione, possiamo utilizzare tutti i 9 canali. Se invece abbiamo un cavo HoliSurface[®] da 12 canali e abbiamo collegato il triassiale HOLI3C, i primi tre canali non possono essere utilizzati in quanto il segnale che proviene dal triassiale viaggia lungo i primi tre canali (in questo caso saranno disponibili i canali/connettori dal 4 al 12, ma non i primi 3).

Se effettuiamo unicamente la prima delle due acquisizioni qui sotto rappresentate, otterremo un *dataset* da 7 tracce [i 4 geofoni a componente singola + le 3 tracce del geofono HOLI3C riferite alle 3 componenti Z, R e T].

Se poi allontaniamo la sorgente di una lunghezza pari a dx/2, otterremo un secondo *dataset* con caratteristiche analoghe ma diversa distanza tra sorgente e primo geofono.

Immaginiamo che, in questo caso, i 4 geofoni a componente singola siano geofoni verticali (gli stessi utilizzati per la MAAM).

Nell'esempio di seguito mostrato, la distanza intergeofonica (dx) e l'*offset minimo* (mo) della prima acquisizione sono stati entrambi fissati in 7 m, mentre per la seconda acquisizione la sorgente è stata spostata a 10.5 m dal primo geofono (mo = 10.5 m). Tale valore è semplicemente la somma del precedente mo (7 m) e metà della distanza intergeofonica (7/2 = 3.5).

Rimozione tracce non pertinenti

Ora, in winMASW[®] Academy, dal pannello di analisi a componente singola carichiamo il primo *dataset*. Per renderlo *omogeneo*, dobbiamo rimuovere le tracce R e T del geofono triassiale (HOLI3C). Se abbiamo svolto il tutto correttamente, saranno da rimuovere quindi la seconda e la terza traccia. La prima traccia si riferisce infatti alla componente Z del triassiale HOLI3C e deve essere mantenuta (in quanto i 4 geofoni a componente singola che abbiamo utilizzato in campagna sono in questo caso geofoni verticali). Per rimuovere tali tracce cliccare il pulsante "zeros/flips/remove" e seguire le relative procedure.

Modifica *offsets*

Avendo rimosso 2 tracce, dobbiamo a questo punto modificare gli *offsets* inserendo i valori corretti (pulsante "modify offset"). Ora avremo un bel dataset di 5 tracce (riferite alla stessa componente) e con gli *offsets* corretti.

Se l'array non è particolarmente lungo e non siamo troppo interessati alle alte frequenze potrebbe anche bastare un *dataset* da 5 tracce (l'aliasing spaziale non è un grosso problema - vedi ad esempio Dal Moro et al., 2003) ma se vogliamo raddoppiare il numero delle tracce (dimezzando la distanza inter-geofonica), dobbiamo aver acquisito anche il secondo *dataset* (vedi immagine qui di seguito) e, su tale *dataset*, andranno effettuate le stesse operazioni sopra descritte.

Avremo a questo punto 2 *datasets* da 5 tracce (in questo caso tutte riferite alla componente Z) che potremo assemblare insieme con lo strumento "combine 2 datasets" disponibile tra le *utilities* di winMASW[®].

Qui di seguito un esempio di *dataset* da 10 tracce ottenuto esattamente in questo modo (il *dataset* è anche analizzato secondo la **tecnica FVS** – vedi *contour lines* nere che si riferiscono al modello V_S sotto riportato e che riproducono molto bene lo spettro di velocità sperimentale [colori in sottofondo]).

HoliSurface[®]

È importante ricordare che per l'analisi delle velocità di fase ("MASW") è spesso raccomandabile l'utilizzo dei geofoni orizzontali che consentono di lavorare con le onde di Love.

Il procedimento di lavoro resta del tutto uguale con l'unica differenza che nel caso stessimo lavorando con la componente T (trasversale) le tracce riferite al geofono HOLI3C da eliminare non sarebbero la seconda e la terza (come nell'esempio precedente) ma la prima e la seconda (che, se l'acquisizione è stata eseguita secondo lo schema che raccomandiamo, sono rispettivamente la componente Z e R).

Naturalmente la domanda che ci si dovrebbe fare è sempre la stessa: perché lavorare con dati multi-offset (necessari per la determinazione delle *velocità di fase*) quando con le *velocità di gruppo* (che possono essere computate utilizzando un unico geofono) si possono ottenere gli stessi risultati?

Qui di seguito l'analisi FVS delle *velocità di fase* (sopra) computate considerando tutte le 10 tracce e l'analisi FVS delle *velocità di gruppo* (sotto) computate considerando <u>UNICAMENTE</u> l'ultima traccia (vedi quadratino rosso in corrispondenza dell'ultima traccia). Il modello di sottosuolo è lo stesso.

La risposta alla *domanda di fondo* è quindi **non** rintracciabile seguendo la logica e le evidenze tecnico-scientifiche, sempre e anche considerando che un professionista non è pagato per "effettuare una MASW" ma per determinare i valori delle V_S (seguendo il metodo più appropriato in base al sito e agli obiettivi - e di metodi ve ne sono moltissimi).

Appendice O: plottare curve HVSR multiple (sezioni HVSR 2D)

Con questo strumento è possibile comparare/plottare <u>una serie di curve HV</u> <u>precedentemente salvate (*file* con formato .hv) nella stessa cartella</u>. L'utilità è duplice:

- 1) è possibile comparare gli HV presi attorno ad un punto (per verificare che siano tra loro congruenti verificando quindi l'omogeneità delle condizioni del sottosuolo);
- 2) costruire "sezioni HVSR 2D" che, in casi fortunati, possono dare un'idea dell'andamento di un certo contatto stratigrafico particolarmente importante (non necessariamente legato al *bedrock*).

In particolare rispetto quest'ultimo tipo di utilizzo, si noti che è possibile inserire le distanze (dal punto zero convenzionalmente fissato al punto del primo HVSR), in modo da poter così riprodurre in modo realistico il "profilo". Durante il caricamento dei dati vengono chieste una serie di informazioni (ad esempio è possibile fissare la frequenza minima e massima da mantenere e indicare le posizioni "inline" lungo la sezione).

Qui di seguito un esempio di quello che è possibile ottenere con questo tool.

Visualizzazione di tutte le curve caricate

curva media (mostrata e salvata)

Plottare le curve originali in modalità 2/3D

I quadrati magenta indicano la posizione delle 21 misure considerate per questo esempio.

Immagine riassuntiva in cui sono anche riportati i nomi dei *files* .hv caricati (in modo da avere il controllo totale sull'operazione svolta).

Come ottenere le posizioni "inline" da inserire (se desiderato) per ottenere poi la sezione 2D con le corrette distanze?

Tre possibili modi (ma la creatività può suggerirne ulteriori):

1) semplicemente tramite <u>misurazioni di campagna</u> (ad esempio, banalmente, con cordella metrica) delle distanze dal punto zero di partenza/riferimento;

- <u>Attraverso Google Earth</u>, sfruttando lo strumento grazie al quale si determina la distanza tra due punti [chiaramente essendo in grado di individuare il punto di ciascuna misura];
- 3) Sfruttando la <u>modalità di lavoro possibile con il tool di gestione di foto multiple</u> <u>geo-referenziate</u> – vedi relativa Appendice). Chiaramente la precisione dipenderà dalle condizioni di copertura satellitare del sito e da quella del *device/smartphone* utilizzato [in generale va benissimo per esplorazioni su ampia scala in cui non è richiesta grande precisione rispetto la precisa ubicazione di ciascun punto e si cerca di ricostruire l'andamento generale].

Plottare le curve normalizzate (per meglio seguire l'andamento):

Conversione delle frequenze in profondità.

Allo scopo di convertire le frequenze in profondità (cosa utile chiaramente solo nel caso in cui la struttura del sottosuolo sia particolarmente semplice e si possa ritenere che un certo "segnale" [picco o meno] sia legato ad uno specifico orizzonte stratigrafico), alla fine dell'elaborazione viene anche chiesta la velocità (Vs) media sino al segnale di cui vogliamo ricostruire un possibile andamento. Questo può accadere ad esempio nel caso di una valle in cui abbiamo una copertura grossomodo omogenea caratterizzata da una certa Vs che dipenda dalla natura dei sedimenti. Utilizzando la relazione *f*=Vs/4H è possibile ottenere quanto mostrato ad esempio in questo esempio in cui il substrato roccioso è coperto da una coltre di sedimenti piuttosto sottili e lenti (inserita una Vs media di 120 m/s). Chiaramente il valore delle Vs è auspicabile provenga da misure della dispersione (in questo caso da analisi *HoliSurface*) e non da mere supposizioni.

L'immagine è salvata nella cartella di lavoro indicando nel nome file stesso la velocità assunta per la conversione. Questo è utile ad esempio nel caso si abbiano due o più picchi e, al fine di ottenere l'andamento del pertinente contatto stratigrafico, si desiderano svolgere due conversioni, la prima con la V_S media sopra il picco a più alta frequenza e la seconda con la V_S media sopra il picco a più bassa profondità (nella cartella di lavoro avremo quindi due *files* relativi a due diverse velocità medie).

Appendice P: concatenare dati SAF (3 componenti)

Tra le *utilities* (nel gruppo "**managing passive data**"), è presente anche lo strumento "concatenate HVSR (SAF)".

Cliccando su quel pulsante sarai in grado di caricare una serie di dati SAF (il formato standard per i dati di microtremore utilizzati per il calcolo HVSR) e otterrai automaticamente un (singolo) file "total_HVSR.saf" con tutti i dati caricati.

Nell'esempio qui sotto abbiamo caricato tre *file* SAF (ciascuno lungo 24 ore) in modo da ottenere un singolo file con dati di 3 giorni.

Una volta caricati i *files*, viene richiesto il nome del file (in formato SAF) con cui salvare il *dataset* completo ottenuto dal mettere in sequenza i singoli files caricati.

HoliSurface[®]

Nel caso il *dataset* ottenuto sia eccessivamente lungo (o a causa di un intervallo di campionamento eccessivamente alto e/o per la durata della registrazione totale) il *dataset* completo non viene mostrato:

Appendice Q: gestione di foto multiple geo-referenziate

Questo *tool* è presente tra le *utilities* di *winMASW*[®] *Academy* e *HoliSurface*[®] e ha lo scopo di gestire in modo efficiente l'esplorazione (soprattutto via HVSR) di ampie aree/profili, dove la precisione del posizionamento non è un fatto importante e un errore relativamente grande (di solito 3-4 m) non rappresenta un vero problema. Questo aspetto va approfondito con un esempio concreto. Immaginiamo di voler evidenziare possibili variazioni laterali lungo un profilo relativamente lungo con dati passivi (HVSR / ESAC o interferometria). Consideriamo ora il caso HVSR.

step#1 (in campagna)

Ad ogni punto di misura scattare una foto con il nostro **smartphone**, action Camera o qualsiasi altro strumento – vedere la sezione "Dati GPS delle nostre applicazioni software (winMASW[®], HoliSurface[®] & ELIOVSP[®])".

Immaginiamo di voler considerare 12 punti/foto lungo un profilo di circa 170 m.

step#2 (in studio/ufficio)

Per prima cosa è necessario nominare (ri-nominare) i *files* delle foto in modo sequenziale in modo che il primo carattere sia il numero progressivo della posizione lungo il profilo investigato. Ad esempio: 1_site1.jpg; 2_site2.jpg; 3_site3.jpg; 4_site4.jpg etc.

step#3

Una volta che abbiamo messo tutti i *files* delle foto nella stessa cartella (da impostare come cartella di lavoro dal pannello principale di *winMASW*[®]/*HoliSurface*[®], possiamo ora cliccare sul pulsante "**foto e dati GPS**" (tra le *utilities*) e caricare le dodici (12) foto contemporaneamente (la selezione di file multipli è possibile con il **pulsante** *ctrl*).

oliSurface® - utilities	×
HS	HS utilities
m	managing active data
nanaging passive data	vertical stack
TCEMCD	assemble VF/EX with HF
double MAAM	compare 2 datasets
concatenate HVSR (SAF)	compare N datasets
	average velocity spectrum
pre-processing	average veroity spectrulli
pre-processing SEG to SAF conversion	nost-processing & miscellanea
pre-processing SEG to SAF conversion 2D and 3D data	post-processing & miscellanea
pre-processing SEG to SAF conversion 2D and 3D data upload & show GRD file	post-processing & miscellanea
pre-processing SEG to SAF conversion 2D and 3D data upload & show GRD file	post-processing & miscellanea qc/Nspt-Vs elastic moduli
pre-processing SEG to SAF conversion 2D and 3D data upload & show GRD file 2D velocity contouring	post-processing & miscellanea qc/Nspt-Vs elastic moduli Vs30 at foundation
pre-processing SEG to SAF conversion 2D and 3D data upload & show GRD file 2D velocity contouring 3D project/visualization	post-processing & miscellanea qc/Nspt-Vs elastic moduli Vs30 at foundation Stesky's equation
pre-processing SEG to SAF conversion 2D and 3D data upload & show GRD file 2D velocity contouring 3D project/visualization	post-processing & miscellanea qc/Nspt-Vs elastic moduli Vs30 at foundation Stesky's equation scientific calculator

In alternativa al caricamento delle 12 foto in questo modo, è anche possibile caricare un "**file di progetto**" in forma di banale file ASCII (quindi con estensione .txt) in cui vengono riportati i files di ogni foto (uno per riga).

Qui un **esempio di file di progetto** (esempio "project_file.txt") per il caricamento di 4 foto: 2_20210826_181153_HDR.jpg

4_GPS_2021-09-08_12-07-36-968.jpg 9_2021-09-08_12-12-29-076.jpg

13_20210831_160123.jpg

Che differenza c'è dunque tra il caricare direttamente le *n* immagini o utilizzare un file di progetto?

Una sola (ma dal punto di vista pratico molto importante): nel caso si carichino direttamente le immagini è necessario che siano ri-nominate come sopra sottolineato se vogliamo che la sequenza sia quella corretta e quindi le lunghezze corrette.

Se invece utilizziamo un file di progetto non è necessario nominare i files delle immagini in modo sequenziale perché la sequenza utilizzata sarà quella indicata dal file di progetto stesso. In quest'ultimo caso le immagini potranno avere dunque nomi qualsiasi (sito1.jpg, 2ns_site.jpg, 2021-09-09.jpg eccetera).

Ora otterrai automaticamente le seguenti immagini (salvate, come sempre, automaticamente nella cartella di lavoro):

Immagine riassuntiva con tutte le foto caricate

Nella cartella di lavoro, per ogni foto otterrai una "figura riepilogativa" e un file kml con lo stesso nome delle foto caricate (es. "SiteLocation_4_number4.kml") [che ovviamente possono essere poi facilmente caricate/utilizzate in **Google Earth**].

Tre immagini con lo stesso significato: la posizione dei dodici siti con tre modi leggermente diversi di visualizzare tali informazioni (puoi scegliere quello più adatto alle tue esigenze e preferenze). Nell'angolo in basso a destra sono riportate le distanze lineari (modificabili) dal primo punto. È possibile evidenziare l'intera sequenza e copiare e incollare i valori ottenuti ovunque sia necessario.

Ad esempio è possibile copiare e incollare una sequenza di questo tipo (cioè le posizioni in linea) nel *file di progetto* che può essere utilizzata per elaborare automaticamente *in batch* tutti i dati HVSR (vedi Appendice "**elaborazione** *in batch* di dati HVSR multipli" – quinta riga del *file di progetto*). Inutile dire che puoi modificare/correggere errori dovuti ad inesattezze del dispositivo che hai utilizzato per scattare le istantanee in campagna.

HoliSurface[®]

Longitude

I numeri delle posizioni (*inline positions*) sono anche automaticamente salvati (sempre nella cartella di lavoro) come **files ASCII (.txt)**. Si otterranno dunque i due seguenti files:

Distances_from_the_first_point_in_meters.txt

From_the_distances_between_adjacent_points_in_meters.txt

All'interno sono riportati i valori mostrati nell'angolo in basso a destra delle immagini sopra mostrate.

La seguente sezione HVSR 2D è solo un esempio di applicazione concreta delle distanze ottenute considerando la procedura descritta nell'Appendice "**elaborazione in batch di dati HVSR multipli**". In pratica: una serie di dati HVSR sono stati raccolti lungo un profilo. Per ogni punto è stata scattata una foto geo-referenziata.

Le foto sono state caricate con lo strumento descritto in questa Appendice ed è stata quindi ottenuta la posizione dei punti lungo il profilo (ovviamente è stato considerato un semplice profilo lineare).

In questo caso la lunghezza del profilo è di circa 700 m e il numero di punti considerato è 18 (con una migliore visualizzazione nei primi 350 m [maggiore densità di punti]).

Vedi anche l'Appendice "elaborazione in batch di dati HVSR multipli"

Qui di seguito un ulteriore esempio in relazione all'esplorazione di una vasta area in centro Europa:

Si ricordi come nella cartella di lavoro vengano automaticamente salvati i files *kml* per ciascun punto.

Appendice R: elaborazione *batch* di dati HVSR multipli [anche per ricostruzioni 2D]

L'elaborazione di una grande quantità di dati HVSR può richiedere molto tempo. Per farlo automaticamente (risparmiando così tempo ed energia) puoi utilizzare questo strumento (disponibile in *winMASW® Academy* e *HoliSurface®*). Basta scrivere e salvare un semplice file di progetto ASCII e caricarlo poi utilizzando il pulsante "**Multiple HVSR batch processing**" nel pannello HVSR.

Tutti i file da elaborare devono essere archiviati nella stessa cartella in cui si trova anche il file di progetto.

Un esempio di dati e di file di progetto è fornito insieme al software winMASW/HoliSurface nella cartella "**Self_Training_Data_Dissemination**" (vedi sottocartella "Automatic_2D_HVSR_section_data_and_projectfile").

Il file di progetto è un semplice file ASCII con la seguente struttura/contenuto (prova ad aprire il file fornito "project_file_18points.txt"):

The Hill Project 2D HVSR section#1 290 350 0 0 7 13 23 57 80 85 110 118 127 137 146 190 220 287 327 507 725 47 46 45 43 42 41 39 37 36 36 36 36 35.5 35.5 35. 35. 35 36.5 firstPOINT.SAF 1123 photo site1.jpg secondPOINT.seg2 1 1 2 3 photo site2.jpg locationTHREE doubleHOLI3C.seg2 1 1 2 3 photo site3.jpg locationTHREE doubleHOLI3C.seg2 2 6 5 4 photo site4.jpg

Significato di ogni riga del project file

Prima riga: nome del progetto

Seconda riga: in questa riga devi inserire <u>una semplice nota</u> per te (utile ad esempio a ricordare in futuro di che tipo di progetto si tratta)

Terza riga: <u>la velocità media (Vs)</u> tra la superficie e l'orizzonte/contatto che si desidera seguire (Vs equivalente). Questo può essere ad esempio il contatto tra uno strato soffice poco profondo (es. limo) e uno strato di ghiaia (questo tipo di contatti può creare picchi HVSR molto grandi) o il contatto tra uno strato quaternario e il substrato roccioso. Ricorda che un picco HVSR non si riferisce necessariamente al *bedrock*.

Se metti più di un valore, la conversione da frequenze a profondità verrà fatta per tutti i valori di Vs inseriti.

Quarta riga: questa è il *flag* "<u>iberna computer</u>". Se "1" (uno) all'inizio dell'elaborazione in batch il computer si spegnerà automaticamente (ciò può essere utile, ad esempio, nel caso in cui si stia elaborando in batch una grande quantità di dati e si desidera avviare la procedura e dimenticarsene); nel caso il valore sia "0" (zero), al termine della procedura il computer non andrà in ibernazione.

Quinta riga: la <u>posizione</u> di ogni punto (in metri) [vedere anche Appendice "*Gestione di foto multiple geo-referenziate [esplorazione di grandi aree]*"]

Sesta riga: la <u>topografia</u> per ogni punto (in metri). Nel caso in cui non sei interessato a tale funzionalità, inserisci il valore zero (0).

Settima (e successive) riga/righe. In queste righe devono essere fornite quattro (4) informazioni:

- 1) il <u>nome del file</u> dei tuoi dati di microtremore (considerati sia in formato SAF che in formato seg2)
- 2) il geofono triassiale considerato (<u>il nostro file seg2 può contenere dati relativi a più geofoni triassiali! vedi poco oltre in questa sezione</u>)
- 3) la sequenza delle tracce verticale, NS e EW per il geofono considerato
- 4) il nome della foto georeferenziata relativa al punto considerato (un qualsiasi nome va inserito anche se in pratica non abbiamo alcuna foto in questo caso basta inserire ad esempio "photo1.jpg")

Riguardo al numero del "**geofono triassiale considerato**" il punto deve essere molto chiaro.

Con alcuni *sistemi di acquisizione* è possibile registrare più dati "HVSR" contemporaneamente, in più posizioni. Ad esempio, con il nostro sistema, puoi **collegare facilmente due geofoni HOLI3C (a 3 componenti)** e conseguentemente registrare i dati per ottenere le curve HVSR in due posizioni diverse.

Quando utilizzi due (o più) geofoni contemporaneamente, il tuo file conterrà chiaramente più di 3 tracce. Consideriamo qui il semplice caso di 2 geofoni triassiali che registrano simultaneamente i dati. Avrai chiaramente un *dataset*/file finale con 6 tracce (3 relative al primo geofono/sito e 3 relative al secondo geofono/sito). Per gestire facilmente questo tipo di dati HVSR multipli nel tuo progetto, puoi facilmente specificare/definire il significato del tuo file di dati nel *file di progetto*. Se, ad esempio, il file si chiama "locationTHREE_doubleHOLI3C.seg2", è necessario specificare il significato delle tracce nel seguente modo:

locationTHREE_doubleHOLI3C.seg2 1 1 2 3 photo_site1.jpg locationTHREE_doubleHOLI3C.seg2 2 6 5 4 photo_site2.jpg
In questo modo diciamo al software che le prime tre tracce [1 2 3] riguardano il primo geofono (vedi numero rosso) mentre le tracce 6 5 4 riguardano il secondo geofono (vedi numero rosso).

Ovviamente, nel caso in cui abbiamo stiamo utilizzando un singolo geofono, dobbiamo semplicemente scrivere qualcosa come "1 1 2 3" (nel caso in cui la sequenza della traccia sia UD NS e EW) o "1 3 2 1" (nel caso in cui la sequenza della traccia è EW NS UD) [dipende dal *sistema di acquisizione*].

Un'ulteriore situazione possibile è quando l'HVSR deve essere calcolato considerando i dati registrati derivanti da una configurazione congiunta HVSR+MAAM (come nella figura seguente). Per coloro che non hanno familiarità con questa tecnica, MAAM è l'acronimo di *Miniature Array Analysis of Microtremors* (vedi la pagina relativa al <u>software HoliSurface</u> e <u>questo video</u>).

In questo caso il nostro file dati avrà 7 tracce: 3 relative al geofono triassiale e 4 relative ai 4 geofoni verticali utilizzati per la MAAM.

Anche in questo caso è necessario indicare correttamente al software quali sono le tracce UD NS ed EW da utilizzare per il calcolo dell'HVSR. Se, ad esempio, il geofono triassiale fosse collegato ai primi 3 canali del sismografo la linea sarà qualcosa come:

2020-08-06_18-32_point13_HVSR_MAAM110.seg2 1 1 2 3 photo_site1.jpg

Invece, se il geofono triassiale fosse collegato agli ultimi canali (quindi i primi 4 canali sono stati utilizzati per i 4 geofoni verticali), la linea potrebbe essere ad esempio qualcosa del tipo:

2020-08-06_18-32_point13_HVSR_MAAM110.seg2 1 7 6 5 photo_site1.jpg

HoliSurface[®]

In questo caso il sistema e la configurazione sono tali che il settimo canale riguarda la componente UD (verticale), il sesto canale è collegato alla componente NS e il quinto canale alla componente EW.

È quindi di fondamentale importanza che tu sappia esattamente come funziona il tuo *sistema di acquisizione* (ricorda che *Eliosoft* fornisce tutta l'attrezzatura hardware e i software necessari per qualsiasi tipo di applicazione sismica, visita il <u>nostro sito web</u>).

outputs:

Al termine della procedura si otterranno una serie di cartelle in cui è salvata l'analisi completa di ogni *dataset*. Ad esempio, se il diciasettesimo file è denominato "8_2020-03-03_15-09HUNTERbis", l'analisi completa verrà riportata in una nuova cartella denominata "HVSRoutput_17_8_2020-03-03_15-09HUNTERbis".

Otterrai anche una serie di figure con i dati 2D ricostruiti (vedi pagine successive).

Procedura raccomandata (prova ad esercitarti con i dati forniti)

- 1) impostare la cartella di lavoro (dove sono archiviati tutti i dati e i file di progetto)
- 2) caricare una foto geo-referenziata dell'area (facoltativo ma consigliato)
- 3) caricare il primo dataset ed eseguire le elaborazioni volte a definire i migliori parametri da utilizzare durante l'analisi di tutti i dati che verranno elaborati in *batch*
- 4) una volta scelti i migliori parametri di elaborazione (lunghezza della finestra, frequenza minima e massima da considerare, *smoothing*, opzioni di equalizzazione, ecc.), attivare le opzioni "full output" e "close windows" e caricare il file di progetto con pulsante "elaborazione in batch di HVSR multipli".

Nelle pagine seguenti, sono riportati i risultati che è possibile ottenere adottando tale procedura (con i dati di esercitazione e il file di progetto forniti).

Nelle seguenti figure sono mostrate le curve degli spettri di ampiezza e gli HVSR normalizzati (per enfatizzare meglio i picchi HVSR e la loro continuità sulle posizioni in linea)

HoliSurface®

20 100 200 300 400 500 600 700 inline position (m)

Spettri di ampiezza (ampiezze reali e normalizzate) per le tre componenti [verticale, NS e EW].

HVSR (ampiezze reali) utilizzando due diverse scale di colore:

Ulteriori (finali) figure

Conversione in profondità utilizzando la velocità riportata nella terza riga del file di progetto (in questo caso 290 m/s).

Topografia, immagine caricata, profondità (avendo utilizzato la velocità media fornita nel file di progetto) mostrate secondo scale lineari e logaritmiche.

Un secondo esempio

Nelle seguenti figure, possiamo vedere il risultato nel caso in cui non venga considerata la topografia.

HVSR: ampiezze reali

Ampiezze reali: il grande picco a circa 6 Hz è dovuto ad un canale di torba poco profondo (locale) mentre il picco a circa 0.5 Hz è dovuto al substrato roccioso profondo

curve HVSR normalizzate

curve normalizzate (prospettiva 3D)

Conversione in profondità

Le due figure qui mostrate sono ottenute considerando due diversi valori medi di V_S (terza riga nel file di progetto): 50 m/s 380 m/s.

Questi due valori sono stati fissati considerando le caratteristiche specifiche del sito. Mentre il picco HVSR a circa 0.5 Hz è dovuto al substrato roccioso profondo, il grande picco a 6 Hz è dovuto ad un canale di torba. Le torbiere locali sono caratterizzate da un valore Vs di circa 50 m/s (tale valore è stato ottenuto attraverso l'analisi della dispersione delle onde di superficie – in questo caso tramite MAAM) mentre il valore Vs medio per l'intera colonna stratigrafica fino al substrato roccioso è stato stimato considerando i dati ESAC.

Utilizzando questi due valori (50 e 380 m/s) nel file di progetto (terza riga) possiamo ottenere la profondità approssimativa del canale di torba (in questo caso circa 3 m) e la profondità del *bedrock*.

Appendice S: software HS-QC [*Quality Check*] - il tuo assistente di campagna

La maggior parte dei software di acquisizione dei sismografi disponibili sul mercato sono privi di *tools* per la verifica della qualità dei dati acquisiti. Una volta che è stata effettuata l'acquisizione dei dati (attivi o passivi) è infatti impossibile valutare l'effettiva qualità in modo chiaro e "quantitativo".

Per tale ragione, al fine di evitare di portare a casa dati di bassa qualità, è stata implementata il software HS-QC [Quality Check] (compatibile anche con i vecchi computer a 32 bit).

Gli utenti *HoliSurface*[®] e *winMASW*[®] Academy che possiedono il **nostro sistema di** acquisizione ricevono anche la **USB dongle** per il **software HS-QC**, da utilizzare in campagna durante le acquisizioni. Ad un prezzo contenuto **HS-QC** è naturalmente disponibile anche per tutti gli altri utenti.

La qualità dei dati può essere valutata sia per dati attivi (MASW e HS) che passivi (ad esempio HVSR, ESAC, ReMi, MAAM, vibrazioni).

Ci sono due famiglie di pannelli:

1) **quick analysis [pulsanti blu scuro]**: consentono una valutazione dei dati molto veloce ed immediata;

2) **"full" analysis**: una serie di pannelli all'interno dei quali effettuare un'analisi più approfondita (in pratica si tratta di versioni semplificate e ridotte delle analisi possibili con *HoliSurface*[®] e/o *winMASW*[®]).

È disponibile anche un tool per lo **stack** dei dati attivi (vedi pulsante in basso a destra nel pannello principale - immagine qui sotto).

I TRE PULSANTI QUICK

Per la valutazione più rapida e immediata della qualità dei dati, nel pannello principale sono disponibili tre pulsanti **QUICK**, a seconda della tipologia di dati che stai considerando. Dopo aver cliccato sul pulsante di tuo interesse ed aver caricato il *dataset* acquisito otterrai automaticamente una delle seguenti schermate.

DATI ATTIVI

Dati HS [pulsante "quick HS"]

Vengono mostrate le tracce, la curva RPM e le tracce "convertite in velocità"

Dati MASW [pulsante "quick MASW"]

Vengono mostrate le tracce (ampiezze reali e normalizzate) e gli spettri delle velocità di fase (sono mostrati due spettri di velocità, uno delle tracce caricate e uno delle tracce flippate)

Un diverso modo di mostrare le tracce

Ovviamente puoi effettuare lo zoom dei dati

DATI PASSIVI

Pulsante "passive: quick ESAC/ReMi/MAAM/HVSR/vibrations"

Vengono mostrate le tracce con le ampiezze reali (nell'esempio qui sotto riportatto c'è chiaramente un problema con il canale#12 che, grazie all'utilizzo di HS-QC, potrai attivarti al fine di ottenere dei dati correti – potrebbe essere un contatto difettoso, il geofono mal collegato eccetera eccetera)

Un ulteriore output è il Rapporto Spettrale di ciascuna traccia rispetto alla prima.

tracce e spettri di ampiezza e fase delle tracce caricate

HVSR

Nel caso in cui il *dataset* caricato sia composto solo da tre tracce, il software considera i dati come microtremori per il calcolo dell'HVSR e, automaticamente, computa e mostra i seguenti *outputs*

le tre tracce caricate (con le ampiezze reali)

spettri di ampiezza delle tracce caricate (ampiezze reali e normalizzate)

le tracce caricate (nel pannello in basso è sono mostrati solo 3 secondi)

tracce e spettri di ampiezza e fase delle tre tracce

Rapporto Spettrale (Spectral Ratio) di ciascuna traccia rispetto alla prima traccia

Spettri di ampiezza smussati (12%) e HVSR calcolati considerando due possibili situazioni (che dipendono dalle caratteristiche del vostro *sistema di acquisizione*):

1) <u>a sinistra</u> i risultati nel caso in cui il formato delle tracce sia verticale, H1 e H2 (la componente verticale è cioè la prima traccia – formato standard);

2) <u>a destra</u> i risultati nel caso in cui il formato delle tracce sia H1, H2 e verticale (la componente verticale è cioè la terza traccia).

I PANNELLI "ORDINARI" (SEMPLIFICATI)

In aggiunta ai pulsanti/analisi **QUICK**, è disponibile una versione semplificata dei pannelli ordinari, che consentono analisi più dettagliate – ma comunque semplificate – da effettuare già durante le operazioni di acquisizione dei dati (al fine di semplificare le operazioni di campagna i pulsanti attivi sono evidenziati in **verde**).

open works
Please, upload a SAF (or seg2) dataset
default axes

		data spectral ratio and PDM			general settings
		usia, opectral laux and re-m			o enterance depth
		select data			
3		activate			
		select 30	HS www.holisurface.com		HVSR forn Sarface Waxes
		cance) save			HV3R from body wavas
2		remove data			
					Vs Q8 Press
		RPM analysis		Z (vertical component)	(100)
2		1.50		A	150 16 0.55
2		RPM curve		R (radial component)	280 29 0.35
			source	<	380 42 0.35
		26		T	450 50 0.35
Ĩ		Particle Motion		transversal component)	360 40 0.35
					850 94 0.35
			and a construction of the second second		
	0 time to visualize done cut filter decimate		save RVSR	save Lovo-wave spectrum	
	gro		0 0 023		
					0 028
					0 02
					0 0.2
					model upload show M & R
					detait reasonative
					detait reasonable
					detait reasonable
					dotat: estoclable number of modes: Wei speche 6 (MODE

HoliSurface[®]

HoliSurface V suite - MAAM (Miniature Array Analysis of Mic How The V Constraints of Mic Hw The V Constraints of Mic mple to 8 ms (125 Hz) el res data alus (m): 0 vhua data spectra minodate channel magi crean data PSD filter A data selected segments only resultation of show data spectra

velocity spectrum (limits)	50 effec	picking twe dispersion curve	
n wel. 50 max vol.	1600	cking take picking	
24 window length (s)			
 spectral smoothing 		cancel picking	
tapering (%)			

-

velocity in

clear at

litear x axis 🛛 🔻

Appendice T: Strumento DTM (Digital Terrain Model)

Tra le nuove *utilities* è disponibile un piccolo strumento utile a visualizzare dati DTM potendo anche collocare (in modo rapido ed efficace) la posizione del proprio *survey*.

È possibile caricare sino a 4 *files* DTM (formato ASC o TIF) [a completare un possibile mosaico di ampie dimensioni] che vengono poi assemblati e visualizzati con il pulsante "**show DTM**".

È poi possibile (pulsante "**upload georeferenced photo**") caricare una foto georeferenziata del proprio *survey* (vedi sezione "<u>Foto e dati GPS nelle nostre applicazioni</u> (winMASW[®], HoliSurface[®] & ELIOVSP[®])") e, in questo modo, ottenere il posizionamento dell'area investigata come mostrato nelle immagini qui di seguito riportate.

Alcune note (release 2021.1):

- 1) come per tutto il software *HoliSurface®*, passando il *mouse* sopra un certo pulsante, compare una sintetica descrizione di che tipo di operazione viene svolta da tale pulsante
- il processo di identificazione del sito del survey da foto geo-referenziata è automatico nel caso i dati DTM siano riferiti al WGS 84 (World Geodetic System 1984)
- nel caso si desideri identificare il sito del survey ma non si abbiano dati riferiti a tale geoide o foto geo-referenziate, è possibile inserire le coordinate del punto da evidenziare manualmente (nel box sotto il pulsante "upload georeferenced photo")
- 4) nel box sulla destra del pulsante "**upload georeferenced photo**" va inserito il nome della scritta che si desidera inserire (di default è indicata la scritta "survey location")
- 5) i due campi a fianco del menù pop up "color map" servono a indicare il valore minimo e massimo dell'altitudine da considerare e servono dunque anche per modificare il range della scala dei colori scelta

2.394 2.3945 2.395 2.3955 2.396 2.3965 2.397 x (easting in meters) ×10⁶

HoliSurface[®]

Appendice U: regolarizzazione spettro di risposta (utilities)

La regolarizzazione di uno spettro di risposta è un'operazione di per sé discutibile in quanto va a deformare un risultato (una curva) che si immagina rappresentare in forma aderente la *realtà* (trascuriamo tutti i fatti che suggeriscono che, anche svolgendo tutto a regola d'arte, difficilmente le simulazioni svolte con i più comuni strumenti possono in effetti ambire a tanto). La regolarizzazione (svolta secondo le procedure indicate nella sezione del manuale dedicata alla *Risposta Sismica Locale*) è svolta sia nella parte finale del processo di RSL (vedi sezione del manuale dedicata al *computo degli spettri di risposta*) ma, grazie al *tool* ("*response spectrum regularization*") presente tra le *utilities*, è anche possibile caricare uno spettro di risposta ottenuto con altri software e regolarizzarlo.

Lo spettro deve essere stato salvato in un semplice file ASCII come quello qui mostrato:

La prima colonna riporta il **periodo** (T) in secondi e lungo la seconda colonna sono riportate le **Accelerazioni** (in unità di *g*). All'atto di caricare il *file*, il *software* vi chiederà quante righe di *header* sono presenti (in questo caso sono due) e, successivamente, che valore di damping (%) utilizzare (deve essere lo stesso utilizzato per il calcolo dello spettro di risposta originale). Quanto si otterrà è poi come al solito automaticamente salvato nella cartella di lavoro (immagine e curva regolarizzata in un file ASCII di identico formato).

Appendice V: computo distanza tra foto georeferenziate

In diversi pannelli è presente una "icona GPS" (*) che dà accesso a uno strumento per computare la distanza tra due foto georeferenziate. Questo può essere utile in molti casi in cui non è facile o possibile usare la cordella metrica e si stanno considerando distanze sufficientemente grandi (dove le incertezze del GPS risultano accettabili).

🛃 HoliSurface® - utilities		MoliSurface • - determination of the distance between georeferenced photos
HS	HS utilities	1. input photo(s) point#1 2. input photo(s) point#2
- / ~-	stack [also with optimization]	
managing passive data TCEMCD	assemble VF/EX with HF	
double MAAM concatenate HVSR (SAF)	compare N datasets	Ę
pre-processing	average velocity spectrum	
SEG to SAF conversion 2D and 3D data	post-processing & miscellanea	N N N N N N N N N N N N N N N N N N N
upload & show GRD file	qc/Nspt-Vs	I Ĕ
3D project/visualization	elastic moduli Vs30 at foundation	
DTM tool	Stesky's equation	
photos & GPS data response-spectrum regularization	area percentage	3

Una volta caricate le due foto georeferenziate [ovviamente, i dati GPS devono essere presenti in entrambe], si clicca il pulsante "**compute distance**" ottenendo una figura di riepilogo con le informazioni estratte e la distanza (vedi seguenti figure).

Per ciascuno dei due punti è possibile caricare più di una foto. Nel caso in cui si carichino due o più foto, il *software* calcolerà la posizione GPS mediana (in questo modo si possono ridurre gli errori/incertezze di posizione ottenendo quindi una posizione GPS più solida).

Come sempre, i dati vengono salvati automaticamente nella cartella di lavoro corrente.

È inutile dire che l'accuratezza delle informazioni dipende dal dispositivo utilizzato per scattare le foto.

photo#1

HoliSurface®

photo#2

sintesi finale

Appendice Z: il tool SEGY2ELIOSOFT per gestire dati segy passivi

Il formato *segy* è molto diffuso ma ha il problema di avere un limite nel numero di campioni per traccia (32767 è il numero massimo di campioni per traccia). Per questo motivo, i dati passivi salvati con tale formato hanno una struttura "speciale" e devono essere gestiti correttamente per poter essere sfruttati appieno per le nostre analisi. Se avete registrato i vostri dati utilizzando ad esempio uno dei **nodi NuSeis**, potete utilizzare questo strumento per caricare e analizzare facilmente i dati nel pannello ESAC (che è un pannello che fa *molto di più* dell'analisi ESAC standard) o, nel caso siate utenti **HoliSurface**[®], per la preparazione (ri-organizzazione) di dati ibridi da utilizzare per l'analisi congiunta di dati attivi e passivi.

In **winMASW®** Academy, il tool SEGY2ELIOSOFT è accessibile sia dal pannello ESAC sia dal pannello delle *utilities*.

In HoliSurface[®], il tool SEGY2ELIOSOFT è accessibile dal pannello delle *utilities*.

Importante nota preliminare

I file segy gestiti con il tool **SEGY2ELIOSOFT** necessitano di un <u>nome appropriato</u> in quanto i nostri software winMASW[®] e HoliSurface[®] li leggono e organizzano basandosi sul nome del file. I nomi dei *file* devono dunque avere un numero crescente che può riferirsi, ad esempio, al numero di serie del nodo o alla posizione lungo la linea di acquisizione.

Esempio:

I seguenti file si riferiscono a tre nodi distribuiti in linea *uno dopo l'altro*. Il nodo 1006_5002 è il primo, poi abbiamo il 1006_5003 e infine il 1006_5004. L'ultimo numero è la componente: "_1" è la componente verticale, "_2" è la componente H1 (R) e "_3" è la componente H2 (T, cioè le onde di Love).

1006_5002_1.sgy 1006_5002_2.sgy 1006_5002_3.sgy 1006_5003_1.sgy 1006_5003_2.sgy 1006_5003_3.sgy 1006_5004_1.sgy 1006_5004_2.sgy 1006_5004_3.sgy

Mantenere rigorosamente questa linea di ragionamento/pensiero, altrimenti i dati non possono essere caricati e ri-organizzati correttamente.

Procedura

L'utilizzo di questo *tool* è abbastanza semplice e, una volta creata e fissata la *cartella di lavoro* (dove si trovano tutti i file segy), è sufficiente seguire in modo scrupoloso la seguente sequenza di operazioni:

#1. Caricare tutti i file della componente Verticale (Z)

#2. Caricare tutti i file relativi alla componente Radiale (o Nord-Sud)

#3. Caricare tutti i file relativi alla componente Trasversale (o Est-Ovest)

#4. Inserire qualsiasi nota si ritenga utile per ricordare dettagli/informazioni relative all'acquisizione/sito

#5. Aggiungere le posizioni in linea (nel caso in cui l'acquisizione sia stata effettuata lungo una linea) o, in termini generali, le posizioni *x* per ciascun sensore (in metri) [x è l'asse *in linea*].

#6. Nel caso in cui l'acquisizione non fosse lungo una linea/sezione, inserire le posizioni y per ciascun sensore (sempre in metri) [se l'acquisizione è stata eseguita lungo una linea, si può lasciare questo campo vuoto].

#7. Se si desidera **ri-campionare i dati**, è sufficiente selezionare la *nuova frequenza* nel menu sopra il pulsante "**ARRANGE DATA**" (se si sta lavorando con **dati IBRIDI per la tecnica HoliSurface**[®], è necessario lavorare con frequenze di campionamento elevate di 1 o 2 ms, cioè 1000 o 500 Hz).

working folder #1. upload Z-component segy files #2. upload R-component segy files #3. upload T-component segy files write here your NOTES about the survey	This tool is aimed at reading and properly re-arrange the segy continuous data recorded for instance with NuSeis nodes. #1. Upload all the components and fix all the parameters. #2. Fix the two options (synchronous data? Do you want SAF files for each node?) #3. Eventually click the "arrange the data" button and you will obtain the files properly re-arranged and ready to be uploaded in the ESAC panel.
☐ synchronous data □ create	SAF files resampling ~
www.winmasw.c	arrange data

HoliSurface[®]

Se i dati sono stati registrati simultaneamente (tutti i sensori registrano in sincrono), è necessario selezionare "**synchronous data**" e se si desidera creare un file SAF per ogni nodo, è possibile attivare l'opzione "**create SAF files**". Naturalmente, <u>è possibile salvare i file SAF solo se i dati sono sincroni</u>. La creazione di *file* SAF è <u>necessaria nel caso in cui si voglia lavorare con l'approccio IBRIDO in HoliSurface[®]</u> (in tal caso, si hanno tipicamente i dati di due soli nodi).

Ora si è pronti per ottenere i dati ri-organizzati attraverso il pulsante "ARRANGE DATA ". Si otterrà un unico file (con estensione .mat) che si potrà caricare nel pannello ESAC (in **winMASW® Academy**). Gli utenti **HoliSurface®** che intendono lavorare con l'approccio IBRIDO necessitano invece dei **due file SAF** che possono essere caricati tramite il pulsante "**HYBRID data: extract active shots**" nei due pannelli principali del software HoliSurface[®] (pannello "HoliSurface" e "HS (disp) + HVSR").

Per gli utenti winMASW[®] Academy:

Nel pannello ESAC è possibile caricare sia i file segy a componente singola (Z come "main component", R come "H1 component" e T come "H2 component") oppure, nel caso in cui si siano riorganizzati i dati con lo strumento SEGY2ELIOSOFT, è possibile caricare come "main component" (seconda icona da sinistra sulla *toolbar*) il file .mat (formato Matlab/ELIOSOFT) ottenuto e **si caricheranno assieme tutte le tre le componenti.**

Per gli utenti HoliSurface® (DATI IBRIDI):

Per estrarre gli *shots* attivi prodotti durante un'acquisizione ibrida, <u>una volta riordinati i dati</u> <u>e ottenuti anche</u> <u>i file SAF per ciascuna delle due (o più) posizioni dei punti</u>, basterà cliccare sul pulsante "HYBRID DATA: extract active shots" (nel pannello "HoliSurface" o in "HS (disp) + HVSR").

Si sceglierà l'opzione "TWO files" e si caricherà prima il file SAF del nodo vicino alla *sorgente* e poi quello del *ricevitore* (lontano da essa) [si veda il **manuale HoliSurface**[®] sull'approccio di acquisizione IBRIDO che consente di registrare contemporaneamente i dati utili al calcolo di due curve HVSR e gli shots attivi per l'analisi delle velocità di gruppo multi-componente e della curva RPM].

NOTE AGGIUNTIVE

Alcuni accessori per il sistema HoliSurface®

Oltre a fornire l'intero *sistema di acquisizione* di cui puoi avere bisogno, segnaliamo anche i seguenti accessori: il *dispositivo AREA51* e il *Power Bank Solare*

Dispositivo AREA51

Dispositivo per il rapido posizionamento dei geofoni in campagna in caso di acquisizioni MAAM. Disponibile in due versioni: *a triangolo* (solo per geometrie a triangolo) o *a cerchio* (per geometria sia triangolari che a pentagono). La confezione contiene il dispositivo vero e proprio (cerchio o triangolo - in polietilene), la sacca in cui inserire le astine e i raccordi per le astine (oramai introvabili). Per comodità di spedizione non vengono inviate le astine che possono essere facilmente trovate in un qualsiasi negozio di *fai-da-te*.

Raccordo tra le astine (per incrementare il raggio del triangolo/pentagono nel caso il raggio sia particolarmente ampio).

Power bank solare

Tra i vari accessori utili in campagna, segnaliamo anche il *power bank* a cui collegare il notebook di campagna quando la batteria comincia a scarseggiare.

L'energia è immagazzinata nel *power bank* grazie una sufficientemente lunga esposizione al sole o collegandolo alla presa di casa.

Chiaramente il *power bank* può essere utilizzato per ricaricare qualsiasi altro tipo di aggeggio elettronico (I-Pad, cellulari ecc.).

Netbook di campagna alimentato dal power bank solare.

Per informazioni e ordini: holisurface@winmasw.com

Risoluzione problemi e Assistenza

Qualsiasi software ha inevitabilmente problemi tipicamente legati ad un uso diverso rispetto alle modalità operative pensate dal programmatore.

Vi sono alcuni problemi originati dall'azione troppo invasiva di alcuni Antivirus

Prima di allarmarti, prova a disabilitare il tuo antivirus (o ad aggiungere HoliSurface[®] tra i software di cui l'antivirus si deve fidare e con cui non deve interagire).

Considera la possibilità di installare l'**anti-virus AVG** (gratuito e più discreto e affidabile di molti altri).

Riportate qualsiasi problema a winmasw@winmasw.com indicando sempre:

- > User ID (UID) e Serial Number (SN) della chiavetta in vostro possesso
- > il software e la *release* in vostro possesso (ad esempio: HoliSurface[®], HS-2019)
- il sistema operativo utilizzato
- è <u>necessario</u> che siano chiaramente descritti sia l'errore che la situazione nella quale tale errore si verifica.

Inviateci sempre lo <u>snapshot della finestra DOS</u> (cioè la finestra nera di fondo) al momento dell'errore

<u>Sessione in remoto</u>: se, per risolvere il problema dell'utente, è necessario un intervento diretto da parte di *Eliosoft*, la soluzione migliore è rappresentata da una *sessione in remoto* via <u>*AnyDesk*</u> (<u>https://anydesk.com</u>). In tale caso, vi chiediamo gentilmente di:

- inviare a <u>winmasw@winmasw.com</u> una richiesta per fissare una sessione in remoto
- scaricare e installare il *software AnyDesk* (software gratuito per l'accesso da remoto) seguendo con attenzione le istruzioni fornite (si raccomanda puntualità)
- inviare via email il vostro ID (numero identificativo del vostro PC) all'ora concordata per la sessione in remoto.

Di seguito alcuni problemi già noti e facilmente gestibili dall'utente stesso.

Alcune importanti note generali:

1. Molti problemi sono legati al sistema operativo (si ricorda che winMASW[®], HoliSurface[®] ed ELIOVSP funzionano solo su sistemi operativi a 64bit - <u>consigliamo fortemente *windows* 10 e 11</u>).

2. Aggiornate **spesso** il vostro sistema con "windows update" (aggiornate anche le componenti dichiarate non importanti dal sistema di rilevamento automatico di windows).

3. Taluni anti-virus (al momento è accaduto con AVAST AVIRA e PANDA) possono non essere in grado di comprendere che il sistema di protezione hardware adottato per winMASW[®], HoliSurface[®] ed ELIOVSP non è un virus. L'installatore dovrebbe essere in grado di ordinare all'antivirus di ignorare quanto contenuto di una determinata cartella di installazione. Se non in grado di effettuare tale operazione si consigliano anti-virus più "smart" (e.g. AVG)

4. Tenete sempre in ordine il vostro PC con frequenti operazioni di pulizia e ottimizzazione possibili con diversi software (ad esempio **Glary Utilities**). Un computer è una macchina altamente complessa di cui ci si deve prendere cura (Desktops con decine di files e cartelle sono in genere la prima evidenza di pericolose carenze in questo senso).

Primo possibile problema

Se al lancio del software ottenete una finestra di errore con un messaggio analogo a quello mostrato nella seguente finestra (il numero della versione del *MATLAB Runtime* cambia nel corso degli anni) il problema risiede nel non corretto svolgimento delle operazioni di installazione del software; in particolare non sono state (correttamente) installate le librerie Matlab.

Si raccomanda di leggere con attenzione il file "LEGGIMI.PDF" all'interno del DVD/USB del software, seguendo con scrupolo le semplici istruzioni e verificando quindi che il processo di installazione si svolga per intero e correttamente.

Errore "**Undefined function or variable 'matlabrc'**" (visibile al lancio del programma sulla finestra DOS)

Soluzione

1) attiva la visualizzazione delle cartelle e dei files nascosti (la procedura è facilmente rintracciabile in internet);

2) cancella manualmente la cartella "temporanea" del Matlab Runtime Compiler.

Vai cioè alla cartella *C:\Users\[username]\AppData\Local\Temp\[username]\mcrCache[version]* e cancellala.

3) re-installa il file *MCRinstaller.exe* presente nella cartella "*preHoliSurface*" del CD di installazione *HoliSurface* (cioè semplicemente lancia l'eseguibile *MCRinstaller.exe*).

A questo punto tutto dovrebbe essere sistemato e puoi provare a lanciare HoliSurface.

MESSY DESK \rightarrow NO ASSISTANCE

Se il vostro *desk* somiglia a quello dell'immagine qui sotto, **non possiamo fornirvi alcuna assistenza**. Un computer è uno strumento sofisticato che richiede cura e serietà. Siamo tutti professionisti e gli strumenti *hardware* e *software* che utilizziamo per il nostro lavoro quotidiano devono essere gestiti e mantenuti correttamente.

Soluzione

- Cerca (*search*) la sotto-cartella "MathWorks" all'interno della cartella "users" (o "C:/utenti") e cancellala. <u>Attenzione</u>: non è una cartella "C:/utenti/MathWorks", è una cartella all'interno di una delle cartelle "C:/utenti", quindi effettua una ricerca di "MathWorks".

- Fai la stessa cosa per la cartella *mcrCache* (sempre all'interno di una delle cartelle presenti in C:/utenti). In alcuni casi/sistemi, a seconda della propria release del software, la cartella potrebbe chiamarsi anche (ad esempio) *mcrCache9.2.*

In alcuni casi tale cartella è più facilmente identificabile con una ricerca da C:/ (e non dalla sottocartella *C:/utenti*). Si troverà ad esempio la cartella "C:\Utenti\Mario\AppData\Local\Temp\Mario\mcrCache9.2", che dovrà essere cancellata.

Una volta cancellata tale cartella si potrà rilanciare *winMASW/HoliSurface/*ELIOVSP.

- Se non dovesse funzionare, re-installa il file *MCRinstaller.exe* presente ad esempio presente nella cartella "*prewinMASW*" del DVD di installazione *winMASW* (cioè semplicemente lancia l'eseguibile *MCRinstaller.exe*).

f

I nostri social media

Consigliamo in particolare la nostra pagina *Facebook* frequentemente aggiornata con piccoli casi studio, novità e suggerimenti.

https://www.facebook.com/HoliSurface [pubblico]

https://www.facebook.com/winMASW [per amici]

You Tube https://www.youtube.com/user/winMASW/playlists

ResearchGate https://www.researchgate.net/profile/Giancarlo Dal Moro

Servizio Analisi Dati Sismici

Hai l'esigenza di elaborare dati secondo le tecniche *HoliSurface*[®], *DownHole*, *MASW* (*multi-componente*), *ReMi*, *ESAC/SPAC*, *MAAM*, *HVSR* ma non hai il software e vuoi valutare con calma se acquistarlo?

Puoi inviarci i tuoi dati (acquisiti secondo modalità indicate nel dettaglio) e noi ci occuperemo dell'elaborazione con ricostruzione del profilo verticale V_S (quindi anche della Vs30 e della Vs equivalente).

Nel caso si decida di avvalersi di tale servizio è fondamentale inviare:

1. informazioni disponibili riguardo la stratigrafia (indicando anche a che profondità ti aspetteresti di trovare il famigerato *bedrock*);

2. almeno una **foto** dello stendimento utile a capire il contesto del sito e l'acquisizione svolta (possibilmente con le informazioni GPS incluse – vedi sezione "Foto e dati GPS nelle applicazioni ELIOSOFT");

3. acquisizioni **onde di Rayleigh (VF) e Love (HF)** [nomi files rappresentativi del tipo di acquisizione e dell'offset – ad esempio VF_off50.seg2; HF_off50.seg2 (importante inviare non solo i dati *stack* ma anche i singoli *shots*, in modo da verificare la qualità dell'intera operazione di acquisizione)];

4. due misure HVSR (cioè microtremori) con geofono ad un estremo dello stendimento ed al centro (circa a metà) dello stendimento (nomi dei *files* rappresentativi – ad esempio: HVSR_Z_NS_EW_centrale.sg2; HVSR_Z_EW_NS_finestendimento.seg2 o HVcentro.SAF e HVricevitoreHS.SAF)

<u>Fondamentale</u>: i nomi dei *files* e il modo in cui sono organizzati nella cartella inviata <u>devono</u> essere indicativi dei dati stessi e rispecchiare la logica illustrata nella sezione "1.13. Lavorare in modo ordinato, razionale e produttivo" del libro *Acquisizione e analisi di dati sismici e vibrazionali per studi di caratterizzazione sismica e geotecnica* (Dario Flaccovio Editore, 2019).

In estrema sintesi, i dati devono essere nominati come indicato nel libro e in questo stesso manuale e organizzati in sottocartelle che rendano ordinato e chiaro il significato di tutto, ben tenendo conto che **l'unità base da considerare è** *il sito*.

Se stiamo ad esempio considerando i dati acquisiti in un sito che denominiamo sito1, avremo a che fare con una cartella nominata appunto sito1 all'interno della quale vi saranno le pertinenti sottocartelle. Ad esempio:

HS

HVSR (se vi sono due o più HVSR all'interno di questa sottocartella si organizzeranno ulteriori sottocartelle da nominare ad esempio HVsorgente e HVricevitore (o HVcentrale ecc.)

MAAM

Foto_e_informazioni

Tutto questo eviterà caos (con *files* sparsi per il mondo) e consentirà un flusso di lavoro snello e senza ambiguità.

Qui di seguito uno snapshot dal libro *Acquisizione e analisi di dati sismici e vibrazionali per studi di caratterizzazione sismica e geotecnica* (Dario Flaccovio Editore, 2019).

I I I = I Torre_	_Bronzo	A.			- 0	×	
File Home Sh	hare View	Move to - X Delete - Copy to - Rename	New folder	Properties	Select all	^ 6	
Clipboard		Organise	New	Open	Select		
← → ✓ ↑ - Srore_Bronzo >				✓ ひ Search Torre_Bronzo		P	
EPSON Easy Photo Pri	int 🔻 🌀 Sta	ampa					
	^	Name	Date	e modified	Туре	Size	
Cuick access		HS	26/0	06/2018 13:51	File folder		
Desktop	*	HVSR	26/0	06/2018 13:51	File folder		
Downloads	*	MAAM	26/0	06/2018 13:22	File folder		
🐉 Dropbox	*	multicomponent MA	SW 26/0	06/2018 13:51	File folder		
Documents	*	ESAC	26/0	06/2018 13:53	File folder		
ConeDrive	*	photos_and_info	26/0	06/2018 13:51	File folder		Figura 1.30 Spanshot relativo alla carte
Pictures	* ~	<				>	cipale relativa a un sito di indagine. P

Salvo casi eccezionali si offrono esclusivamente pacchetti di 2 elaborazioni (pagamento anticipato).

I dati (correttamente nominati e organizzati) vanno inviati **non** come allegato di posta (che ben presto si intaserebbe) ma tramite servizi quali ad esempio **wetransfer** o simili.

winmasw@winmasw.com

www.winmasw.com

Il 2D ai massimi livelli: servizio di elaborazione ADAM-2D

Mentre per brevi sezioni 2D puoi sicuramente utilizzare gli strumenti che **winMASW**[®] **Academy** ti mette a disposizione, nel caso tu abbia bisogno di esplorare aree più ampie (secondo un'elaborazione avanzata dei dati), **ADAM-2D** è un servizio di elaborazione dati che offriamo per analizzare grandi quantità di dati e ricostruire la sezione V_S 2D grazie all'analisi congiunta di dati multi-componente (tale approccio è l'unico in grado di fornire valori di V_S affidabili e privi di ambiguità che inevitabilmente affliggono qualsiasi tipo di analisi basata su una sola componente - per i dettagli, date un'occhiata ai nostri libri *Flaccovio, Elsevier* e *Springer*).

Ecco alcune immagini di ciò che possiamo fare con i vostri dati (possibilmente multicomponente). Per capire *chi* è *cosa*, leggete attentamente il titolo di ogni figura [sono infatti utilizzati gli acronimi più comuni – *Common Offset Gather*, eccetera] e quanto indicato in ordinata e ascissa. In questo caso l'obiettivo era quello di verificare la presenza di un possibile paleo-canale (che si immetteva nel vicino lago) e che ora è completamente coperto da depositi alluvionali recenti (topografia piatta).

Esempio di 8 shots successivi (componente Z) [vedi numero di shot nel suffisso di ciascun nome file] che possono essere invertiti congiuntamente alla componente R (radiale) o T (trasversale – onde di Love) in modo da ottenere un modello altamente vincolato.

ww.winmasw.com

www.winmasw.com

www.winmasw.com

שסכיאצהחחוא:אשש

6.0 (s) 0.4 (s)

0.8

1 0

50

100

inline position (m)

150

200

www.winmasw.com

20

25

1 HVSR

Horizontal-to-Vertical Spectral Ratio

2 HS/MFA

HoliSurface (improved MFA) (multi-component active seismics by using a single 3C geophone)

3 MAAM

Miniature Array Analysis of Microtremors (micro-array passive seismics)

4 Vibrational Analyses

Vibrations UNI9160 & DIN4150 Building resonances (flexural and torsional modes)

5 SSR (Standard Spectral Ratio)

Empirical Determination of the Site Amplification

Tons of utilities to efficiently manage the data and present them (handling GPS data, trace selection editing & filtering, vertical stack & much more)

efficient seismic exploration and vibration data analysis by means of active and passive data acquired by using just one 3C geophone and 3 or 4 vertical geophones

The background photo shows a model of the *Mars Rover Curiosity* (courtesy of *Mattel*), the vehicle used for the exploration of the Red Planet. The same way as the Rover efficiently explores very remote and extreme environments, the active and passive methodologies implemented in *HoliSurface* require very light and easy-to-carry equipment and limited space, but can nevertheless providing very robust subsurface models.

Il *software* per la sismica di pozzo (*Vertical Seismic Profile*) che consente elaborazioni complete e sofisticate e la <u>modellazione</u> <u>congiunta delle onde P ed SH anche congiuntamente all'HVSR</u>!

Il software è, tra le molte cose, capace di gestire dati raccolti con doppio geofono da foro (la cosa consente di dimezzare lo sforzo di campagna).

Scrivici per avere copia del manuale e scoprire che le cose possono essere più semplici (ma molto più precise) di quanto probabilmente sei abituato a pensare...

Geofono da foro con *doppio sensore* (due geofoni 3C posti a 1 m di distanza l'uno dall'altro). Per dettagli vedi manuale ELIOVSP (il nostro software per l'analisi congiunta di dati sismici di pozzo e curva HVSR).

www.winmasw.com

